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Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human
epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or
arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms
by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism
on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our
studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-
induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible
mammary glands from E-R72 (R72 xMMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype
(SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation.
Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to
angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to
mammary tumorigenesis through chronic inflammation.

Introduction

Female breast cancer (BrCa) affects more than 2.2 million
women each year worldwide [1]. Etiology of BrCa is het-
erogeneous and involves genetic, environmental, and life-
style factors. Only 5–10% of BrCas cases are hereditary [2],
indicating that the majority are due to genetic suscept-
ibilities affecting response to environmental exposures.

Several established risk factors, including obesity and
aging, are associated with increased levels of protumori-
genic, chronic tissue inflammation [3–5].

The tumor suppressor p53 is the most commonly muta-
ted gene in BrCa, and functional disruption of p53 is
associated with increased tumor aggressiveness, refractori-
ness to treatment and poorer prognosis [6, 7]. P53 regulates
cell-autonomous biological activities that maintain genomic
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integrity, particularly in response to insults such as DNA
damage, oncogene activation, and oxidative stress. In
response to these stressors, p53 transactivates genes that
regulate apoptosis, cell cycle arrest and senescence, facil-
itating repair or elimination of irreparably damaged cells
[8]. However, recent evidence indicates that the anti-cancer
effects of p53 can be undermined when persistent cell cycle
arrest and accumulation of senescent cells leads to
the acquisition of a senescence-associated secretory phe-
notype (SASP). SASP is characterized by synthesis and
secretion of a variety of proinflammatory cytokines
and chemokines resulting in chronic inflammation that is
protumorigenic [9].

A common single-nucleotide polymorphism of p53 at
codon 72 modifies critical biological processes that impact
susceptibility to several cancers. This SNP encodes either
proline (P72) or arginine (R72), and is located in the
polyproline region of exon 4, between the transactivation
and DNA binding domains [10, 11]. In vitro studies with
human cancer cells and rodent fibroblasts show that fol-
lowing DNA damage, the P72 variant preferentially pro-
motes cell cycle arrest [12], senescence [13], and DNA
repair [14], while the R72 variant more effectively induces
apoptosis [15–17].

In vivo analyses in Hupki (Human p53 exon 4–9 knock-
in) mice have shown that these codon 72 variants induce
apoptosis and senescence in a tissue and context-dependent
manner [18, 19]. Exposure to radiation significantly induces
levels of apoptosis in the small intestine of R72 compared to
P72 mice. However, P72 animals have significantly higher
levels of apoptosis in the thymus [18]. When Hupki mice
are fed an obesogenic, high-fat diet, the codon 72 variants
differentially regulate genes involved in cellular metabolism
and inflammation [19].

Human epidemiological studies of cancer risk have
shown modest, but significant associations of codon 72 p53
variants with incidence in several types of cancers, includ-
ing lung, prostate, and breast [20–24]. Similar to the Hupki
mouse, codon 72 p53 variants display cell- and tissue-
specific activities in humans, and are not associated with
increased risk for all cancer types [11].

The mechanisms by which codon 72 p53 variants dif-
ferentially affect breast cancer susceptibility remain unre-
solved. Therefore, we explored this question in a
physiologically relevant in vivo setting, using a well-char-
acterized, humanized p53 exon 4 knock-in mouse model,
expressing the codon 72 polymorphisms [17]. Our results
showed that the R72 variant induced significantly greater
levels of chronic mammary tissue inflammation compared
to the P72 variant, contributing to enhanced susceptibility to
mammary carcinogenesis.

Results

Increased mammary tumor incidence and reduced
latency in R72 mice

Initial investigations focused on the impact of the p53
variants at codon 72 on mammary tumor development in
two distinct models. First, 7,12-dimethylbenz(a)anthracene
(DMBA) was used to induce mammary carcinomas [25]. As
shown in Fig. 1A, mice homozygous for the arginine var-
iant, R72 (n= 39), had significantly reduced mammary
tumor latency compared to those with the proline variant,
P72 (n= 40, Log-rank test; p= 0.049). Mammary tumors
first appeared at 21 days post-DMBA in R72 mice, 50 days
earlier than in the P72 animals. R72 mice also had a 50%
higher mammary tumor incidence compared to P72 animals
(Fig. 1B). Mice in the vehicle-treated groups remained
tumor-free, indicating that the codon 72 variants did not
stimulate spontaneous mammary tumorigenesis in this
model (Fig. 1A).

Next, the impact of p53 polymorphic variants on mam-
mary tumorigenesis was investigated in the MMTV-Erbb2/
Neu FVB mouse model [26]. Mice were cross-bred to
generate study animals that were homozygous for the codon
72 variants and hemizygous for the MMTV-Erbb2/Neu
transgene (E-P72R). As in the carcinogenesis study, E-R72
mice (n= 56) had significantly reduced mammary tumor
latency compared to E-P72 (n= 54, Log-rank test, p=
0.004, Fig. 1C). Mammary tumors first appeared in E-R72
animals as early as 122 days of age, compared to 173 days
in E-P72 animals, a 51-day difference. Mean tumor laten-
cies of E-R72 and E-P72 mice were 226 and 250 days,
respectively. Mammary tumor incidence was 17% higher in
E-R72 animals compared to E-P72 animals (p= 0.004, Fig.
1D). As previously observed in MMTV-Erbb2/Neu mice,
which are on an FVB background [26], mammary tumors in
both E-R72 and E-P72 mice were mammary adenocarci-
nomas with moderate to poor differentiation (Fig. 1E, F).
These results show that in comparison to P72, R72 mice had
increased mammary tumor incidence and reduced latency in
both carcinogenesis and genetic models. Additionally, these
findings demonstrate that the p53 variants altered the sus-
ceptibility to tumorigenesis in response to chemical
(DMBA) or oncogenic (Erbb2) stimuli.

These latency results prompted an assessment of tumor
progression. Tumors in E-R72 animals had a significantly
higher average growth rate (37.8 ± 5.1 mm3 per day) com-
pared to tumors in E-P72 mice (22.8 ± 5.0 mm3 per day)
(Fig. 2A). Immunolocalization of Ki67 revealed sig-
nificantly higher levels of proliferation in tumors from E-
R72 compared to E-P72 mice (Fig. 2B, C). Tumors from
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both E-R72 and E-P72 mice had comparably low levels of
apoptosis (Fig. 2D, E). As shown in Fig. 2F, variation in
tumor progression was not due to differential expression of
Erbb2/Neu and/or p53.

Increased proportion of senescent cells in
susceptible mammary glands from E-R72 mice

The local milieu in susceptible tissues can play a critical
role in tumor initiation and progression [9, 27]. Previous
studies have shown that the codon 72 variants differ in their
ability to regulate biological processes that regulate cell
survival, and modulate the tissue environment [8, 12–15,
27]. Apoptosis, cell cycle arrest and senescence in the
mammary glands of adult E-P72 and E-R72 mice were
examined to determine the effect of the codon 72 variants
on these processes.

First, expression levels of the p53-regulated proapoptotic
genes that trigger mitochondrial permeabilization leading to
Caspase cleavage were assessed [8]. As shown in Fig. 3A,

expression levels of Puma, Noxa, and Bax were similar in
mammary glands from E-P72 and E-R72 animals. At the
histological level, immunolocalization of CC3 revealed
comparably low levels of apoptosis in glands of E-R72 and E-
P72 mice (Fig. 3B), indicating that the differences in tumor-
igenesis were not due to variations in programmed cell death.

Two major effectors of cell cycle arrest and senescence,
p21 and p16INK4a, mediate their effects by disrupting the
formation of Cyclin-CDK complexes and activating RB via
hypophosphorylation [28–30]. The active form of RB binds
to members of the E2F family, repressing expression of cell
cycle progression genes [31]. As shown in Fig. 3C, mRNA
expression levels of p21 and p16INK4a were two and three
times higher, respectively, in the glands of E-R72 compared
to E-P72 animals (*p < 0.05). Mammary glands from E-R72
mice also had highly increased p21 protein expression and
significantly decreased levels of phosphorylated RB (P-RB)
compared to their E-P72 counterparts (Fig. 3D, E).

Sudan Black B (SBB) identifies senescent cells by
binding to lipofuscins, which are aggregates of oxidized
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proteins and lipids [32]. As shown in Figs. 3F and G, the
percentage of SBB+ cells was significantly higher in
mammary glands of E-R72 compared to E-P72 animals.
These results show that while mammary tumor incidence
and proliferation were elevated in E-R72 mice, mammary
glands from these animals also had an increased proportion
of senescent cells.

Increased SASP, proinflammatory cytokines, and
angiogenic factors in susceptible mammary glands
of E-R72 mice

Traditionally, permanent cell cycle arrest, a pre-requisite of
cellular senescence, has been thought to inhibit tumor-
igenesis by preventing expansion of the population of
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transformed cells. However, recent studies provide strong
evidence to the contrary, demonstrating that senescent cells
can acquire a senescence-associated secretory phenotype
(SASP), which is proinflammatory and protumorigenic.

SASP is characterized by secretion of a mixture of proin-
flammatory cytokines, growth and matrix remodeling fac-
tors and chemoattractants that contribute to chronic tissue
inflammation [28, 33]. This inflammatory milieu has been
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shown to stimulate cancer initiation and progression, due to
mutagenic and proliferative signals, respectively [34, 35].

RelA (p65), one of five transcription factors in the NFκB
signal transduction pathway, is phosphorylated in response
to stress and regulates the transcription of factors that
contribute to the inflammatory SASP [36, 37]. As shown in
Figs. 4A and B, levels of phosphorylated p65 (serine 536)
were significantly higher in the glands from E-R72 com-
pared to E-P72 mice, demonstrating differential activation
of the NFκB pathway. In addition, glands from E-R72 mice
had increased expression of genes that regulate acquisition
of the secretory phenotype. Expression of Pai1, an

angiogenic factor that also contributes to sustained cellular
senescence [38], was significantly increased in glands of E-
R72 compared to E-P72 mice (Fig. 4C). The matrix remo-
deling protease gelatinase-B (Mmp9) is associated with
breast cancer risk [39], and Mmp9, but not Mmp3, was
elevated in glands from R72 mice. Expression of the
proinflammatory cytokines Tnfα and Il6, but not Il8, were
also significantly increased in mammary glands of E-R72
mice compared to their E-P72 counterparts (Fig. 4C).

Inflammation also stimulates vascular dilation and
increased capillary density as part of the immune response
[40]. VEGFA is one of the best studied angiogenic factors,
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and variants have been associated with increased risk of a
variety of cancers, including BrCa [41]. A significant
increase in Vegfa expression was observed in the glands of
E-R72 mice (Fig. 4C). Vascular density, assessed by
immunohistochemical localization of the endothelial
cell marker CD31 [42], was also significantly increased
(Fig. 4D, E).

Influx of proinflammatory macrophages in
susceptible glands of E-R72 mice

The influx and persistence of proinflammatory macrophages
are also critical indicators and contributors to chronic tissue
inflammation [43]. CCL2 is a major driver of macrophage
infiltration and has been shown to promote tumor
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progression in several cancer models [44]. Expression of
this chemoattractant was increased in mammary glands of
E-R72 compared to E-P72 animals, by 3.3 times at the
message level (Fig. 5A), and 1.5 times at the protein level
(Figs. 5B and C).

Macrophage influx was evaluated using the pan-
macrophage marker, IBA1. Immunohistochemical locali-
zation of IBA1 revealed a significantly increased number of
macrophages surrounding the ducts (Fig. 5D, E) and within
the white adipose tissue (WAT) (Fig. 5D–F) of susceptible
mammary glands from E-R72 compared to E-P72 mice. An
increase in the number of crown-like structures (CLSs),
formed when macrophages surround adipocytes, was also
detected in glands from E-R72 animals compared to E-P72
glands (Fig. 5D–G). CLSs are often observed in chronically
inflamed breast tissue from obese women, as well as in
mammary tissues from obese mice [45, 46] and women
with breast cancer [47].

Proinflammatory macrophages produce cytokines such
as IL1β, and induce reactive nitrogen species (RNS)
through upregulation of inducible nitric oxide synthase
(iNOS) [48, 49]. Expression of Il1β and iNos were sig-
nificantly upregulated in mammary glands of E-R72 mice
(Fig. 5H). Dual immunofluorescent localization of IBA1
and IL1β revealed a significant increase of proinflammatory

macrophages around mammary ducts (Fig. 5I and J) and
adipocytes (Fig. 5I–K) in glands of E-R72 compared to E-
P72 mice. As shown in Fig. 5L, macrophages in CLSs also
expressed high levels of IL1β, providing further evidence of
elevated and persistent inflammation in the susceptible
glands of E-R72 compared to E-P72 mice.

Increased tumor-associated macrophages (TAMs)
and vascular density in mammary tumors from E-
R72 mice

Recruitment of macrophages to primary tumor sites is
essential for tumor progression, and inhibition of
CCL2 significantly reduces macrophage infiltration and
mammary tumor growth in MMTV-PyMT mice [50]. TAMs
promote an immunosuppressive and angiogenic environ-
ment that further stimulates tumor growth and progression
[51, 52]. Immunohistochemical analysis revealed sig-
nificantly greater numbers of IBA1+ macrophages in
mammary tumors from E-R72 compared to E-P72 animals
(Figs 6A, B).

TAMs also secrete VEGFA, which promotes angiogen-
esis and supports tumor progression [49, 52]. As shown in
Fig. 6C, Vegfa gene expression was elevated in tumors from
E-R72 compared to E-P72 mice. Density of intratumoral
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blood vessels, assessed by the immunolocalization of
CD31, was also elevated in mammary tumors from E-R72
animals (Fig. 6D, E). Together, these results show that
influx of TAMs, along with elevated levels Vegfa and
angiogenesis, contributed to the enhanced tumor progres-
sion in E-R72 mice.

Enhanced binding of R72 to promoters of cell cycle
arrest and inflammation genes

P53 directly transactivates Tnfα, Ccl2, and p21 by binding
to canonical p53 response elements (REs) in their respective
promoter regions [19, 53]. As discussed above, these genes
are critical effectors of cellular senescence, SASP and

inflammation, and their expression was significantly upre-
gulated in susceptible mammary glands from E-R72 ani-
mals (Figs. 3C and 4C). In vivo ChIP- QPCR analysis was
used to examine the association of the p53 variants with the
REs of their target gene promoters. ChIP assays of extracts
from susceptible mammary glands revealed a significantly
greater enrichment of the R72 variant at the gene promoters
of p21 and Tnfα (Figs. 7A, B, D and E). For Ccl2, binding
to RE 2 was similar in both genotypes, however, p53
binding to RE1 was significantly higher in E-R72 animals
compared to E-P72 animals (Figs. 7C and F). These results
indicate that the R72 variant had an increased affinity for
specific REs, resulting in an increased ability to bind to and
transactivate these critical genes involved in cellular
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senescence, macrophage recruitment, and chronic inflam-
mation, ultimately leading to a protumorigenic tissue
milieu.

Discussion

This study examined the impact of the p53 codon 72
polymorphic variants on mammary tumorigenesis in a
humanized (“knock-in”) mouse model. Results show that
the codon 72 p53 polymorphisms differentially impacted
cancer susceptibility and latency in both the DMBA-
induced and MMTV-Erbb2/Neu mammary tumor models,
representing two distinct tumor etiologies. Compared to the
P72 variant, increased mammary tumor incidence and
reduced latency were seen in mice homozygous for the R72
variant in both models.

Analysis of susceptible mammary glands revealed an
increase in accumulation of senescent cells and SASP-
mediated chronic inflammation in E-R72 glands compared
to their E-P72 counterparts. Cell cycle regulators p16INK4A

and p21, which are effectors of senescence [28, 29], were
also upregulated in mammary glands of E-R72 mice.
R72 showed a greater affinity for the p53 RE in the distal
portion of the p21 promoter compared to P72, indicating a
direct role of R72 in mediating accumulation of senescent
cells in the tissue.

SASP in E-R72 mice was further stimulated by increased
expression of Pai1, an effector of senescence [38]. Acti-
vation of NFκB, which initiates SASP in senescent cells,
was also significantly elevated in mammary glands of E-
R72 mice. NFκB pathway activation results in increased
expression of proinflammatory cytokines that have been
shown to induce a chronically inflamed tissue milieu [36].
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Proinflammatory cytokines Tnfα and Il6, but not Il8, were
upregulated in the chronically inflamed E-R72 glands. Our
results also show that R72 played a direct role in increasing
expression of Tnfα, since a significantly greater enrichment
of the R72 variant of p53 was detected on the Tnfα
promoter.

Increased influx of proinflammatory macrophages is also
a hallmark of chronic inflammation [54]. In mammary
glands of R72 mice, CCL2 was significantly elevated, and
there was increased association of the R72 variant with the
p53 RE in the distal promoter of the Ccl2 gene. Results also
revealed an increased influx of IBA1+ IL1β+ proin-
flammatory macrophages into the mammary glands of E-
R72 mice, which contributed to a chronically inflamed tis-
sue milieu. During chronic inflammation, proinflammatory
macrophages produce reactive nitrogen species (RNS)
through induction of iNOS, resulting in mutagenic oxidative
DNA damage, which contributes to genomic instability
[43]. In colorectal cancer, RNS-initiated DNA damage
accelerates loss of Apc and enhances tumor development
[55]. Our results also show that iNos expression was
increased in the susceptible mammary glands of E-R72
mice, indicating that production of RNS enhanced muta-
genic transformation of mammary epithelium.

Another contributor to the protumorigenic milieu is
angiogenesis, which is essential for maintenance of chronic
inflammation [40]. MMP9 increases the bioavailability of
VEGFA, which induces angiogenesis and vasodilation [56].
Both Vegfa and Mmp9 were significantly elevated in
mammary glands from E-R72 compared to E-P72 mice,
along with an increase in CD31+ blood vessels. Increased
angiogenesis is seen in susceptible mammary tissue in
mouse models that overexpress Cox2 or Ccl2 [57, 58], and
reduction of angiogenesis by genetic ablation of Cox2 sig-
nificantly reduces MMTV-Erbb2/Neu-induced mammary
tumor incidence [59].

The proinflammatory activities of R72 have also been
reported in the Hupki model, particularly when mice are
maintained on a high-fat diet. The R72 variant more
effectively transactivates Tnfα and Ccl2 genes compared to
P72, inducing inflammation in the liver and WAT. This
effect is accompanied by an increased proportion of
senescent islet cells in the pancreas of R72 compared to P72
mice. In the liver of these Hupki mice, expression of Tnfα
and Npc1l1 genes is higher in R72 than P72 mice, where
they induce inflammation and increase cholesterol absorp-
tion, respectively, predisposing R72 animals to obesity and
insulin resistance [19]. These results are in agreement with
our findings that the R72 variant more effectively induced
inflammation and associated disease progression in the
mammary gland.

Interestingly, a recent human epidemiological study
demonstrates an association of the R72 variant with
inflammatory irritable bowel disease (IBD), which is an
important risk factor for colorectal cancer (CRC) [60].
Consistent with this, positive association studies from Iran
[61], Greece [62], and Argentina [63] have shown that R72
predicts increased susceptibility to CRC. On the other hand,
studies conducted in Turkey [64] and Malaysia [65] have
found that P72 is associated with increased risk, indicating a
possible role for unique and variable gene-environment
interactions, including diet, obesity, and other exposures
that affect chronic inflammation.

The association of the p53 codon 72 SNP with BrCa risk
is complex. Several studies report that mutated R72 is
preferentially retained in breast, colorectal, and head and
neck cancers [21, 22, 66], where it reduces apoptosis, and
contributes to therapeutic resistance and tumor progression
[67]. The retained, mutated R72 allele is also associated
with decreased disease-free interval and overall survival in
BrCa [21]. Epidemiological studies have found that the R72
variant is associated with BrCa risk and reduced overall
survival [11], and some of the strongest associations are in
cohorts of Asian patients [20, 24]. Other studies, conducted
in predominantly White patient populations, have found that
the P72 variant is associated with increased BrCa risk [68].
Taken together, these results indicate that further studies
with diverse patient populations are needed to clarify the
role of the 72 SNP in BrCa susceptibility globally.

Our studies in a humanized mouse model demonstrated
that the p53 codon 72 polymorphic variants differentially
affected susceptibility and kinetics of mammary tumor-
igenesis, and provided evidence for a mechanistic link
between R72 and chronic, protumorigenic tissue inflam-
mation. These studies also illustrate that single-nucleotide
polymorphisms can have a profound effect on tumorigen-
esis in vivo. Given the adverse role of chronic inflammation
in tumorigenesis, codon 72 variants may predict, at least in
part, breast cancer susceptibility, disease progression and/or
treatment outcome.

Materials and methods

Maintenance and genotyping of mice

Transgenic mice used for these studies were on an FVB
background and were homozygous for the proline (P72) or
arginine variant (R72). PCR-based genotyping of mice was
performed as described previously [17]. Genotypes were
verified by a custom quantitative reverse transcription PCR
(RT-PCR) SNP allelic discrimination assay (AH89RLW,
Thermo Fisher Scientific, Waltham, MA) using an
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ABI7900HT real-time PCR instrument (Applied Biosys-
tems, Inc., CA). All study mice were generated from
genotype-confirmed parents.

Breeders were maintained on standard chow ad libitum,
and tumorigenesis study animals were switched to AIN76A
(F1515, Bio-Serv, NJ) diet after weaning. Mice were pro-
vided free access to drinking water and were housed in
Association for Assessment and Accreditation of Labora-
tory Animal Care (AAALAC)-certified, temperature- and
humidity-controlled facilities, with a 12-h light/12-h dark
cycle. All procedures were performed according to proto-
cols approved by the Institutional Animal Care and Use
Committee at Texas A&M University, College Station, TX.

Tumorigenesis experiments

DMBA treatment of mice

Starting at 16 weeks of age, 39 P72 and 40 R72 mice were
administered 1 mg of 7, 12-dimethylbenz[a]anthracene
(DMBA) dissolved in 100 μL corn oil, once a week for
6 weeks by oral gavage. Similarly, another cohort of 16-
week-old P72 (n= 19) and R72 (n= 21) animals were
administered 100 µL of corn oil vehicle once a week for six
weeks by oral gavage.

Generation of MMTV-Erbb2/Neu P72R variant mice

FVB/N-Tg(MMTVneu)202Mul/J mice were purchased
from Jackson Laboratories (Bar Harbor, ME) and bred with
p53 polymorphic mice to generate bigenic mice that were
hemizygous for Erbb2 and homozygous for the p53 var-
iants. Erbb2 copy number was determined by quantitative
RT-PCR according to the Jackson Laboratories protocol
(https://www2.jax.org/protocolsdb/f?p= 116:5:0::NO:5:
P5_MASTER_PROTOCOL_ID,
P5_JRS_CODE:30062,002376). A total of 54 E-P72 and 56
E-R72 mice were used for this study.

Large cohorts of non-randomly assigned animals were
used in tumorigenesis studies to ensure adequate statistical
power. Animals were monitored daily for health status and
tumors in non-blinding manner. Mice were palpated twice
weekly throughout the study and sacrificed when the tumor
reached 1.5 cm in any direction. Mice were sacrificed by
CO2 asphyxiation, mammary tumors were measured and
tissues harvested for later analyses. Tumor histology was
evaluated by two independent pathologists.

Protein extraction and western blots

Protein from 6-month-old E-P72 and E-R72 mammary
glands was extracted from using boiling 2x Laemmli

sample buffer, and concentrations were determined with the
BCA protein assay kit (Thermo Fisher Scientific, Waltham,
MA) according to the manufacturer’s protocol. Equal
amounts of total protein were resolved by sodium dodecyl
sulphate polyacrylamide gel electrophoresis and transferred
to polyvinylidene fluoride (PVDF) membranes. Membranes
were probed with following primary antibodies: from Cell
Signaling Technologies (CST): CCL2 (1:1000, #2029)
GAPDH (1:5000, #2118), Phospho-RB (1:1000, #8516),
Phospho-p65 (Ser536) (1:1000, #3033), TNFα (1:1000,
#11948), from Santa Cruz Technologies: p53 (1:500, sc-
6243) and p21 (1:500, sc-397).

All blots (except GAPDH) were incubated with goat
anti-rabbit HRP-conjugated secondary antibody (1:2500,
CST, #7074) and developed using ECL Prime reagents (GE
Healthcare, IL). Images were captured using a FluorChem
M imager and quantified with AlphaView software (Pro-
teinSimple, CA). GAPDH blots were incubated with
iRDye800CW secondary antibody (1:5000, LI-COR Bios-
ciences 925–3211) and developed and imaged using the
Odyssey Li-COR system (LI-COR Biotechnology, NE).

RNA extraction and quantitative RT-PCR

Mammary glands harvested from 6-month-old E-P72 and
E-R72 animals were homogenized with a Kinematica
Polytron™ bench-top homogenizer and RNA was extracted
with the Maxwell® 16 LEV simplyRNA Tissue Kit,
according to the SimplyRNA tissue protocol (Promega
Corporation, WI). Samples were randomly checked for
RNA quality using the 2200 TapeStation instrument, fol-
lowing the manufacturer’s protocol (Agilent Technologies,
Inc., CA). Total RNA was then reverse transcribed as pre-
viously described [69]. Quantitative RT-PCR analyses were
performed on an ABI7900HT real-time PCR instrument.
TaqMan gene expression assays were used for p53
(Mm01731290_g1) and p21 (Mm04205640_g1, Thermo
Fisher Scientific, Waltham, MA). Previously published
quantitative RT-PCR primers for SYBR green reactions of
Erbb2, Il6, Il8, p16INK4a, Pai1, Tnfα, Ccl2, Vegfa, Mmp3,
Mmp9, Il1β and iNos were used to determine target gene
expression [19, 49, 70–74]. Each sample was normalized to
corresponding TATA box binding protein (Tbp) gene
expression, using a TaqMan assay (Mm00446973_m1,
Thermo Fisher Scientific, Waltham, MA) or published pri-
mers [71], run in triplicate, and quantified using the ΔΔCt

method.

Chromatin immunoprecipitation (ChIP)

Chromatin from mammary glands of 6-month-old E-P72
and E-R72 mice was isolated as described [75]. In brief,
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approximately 300 mg of tissue were minced in cold PBS
and cross-linked in 1% freshly-made paraformaldehyde-
PBS for 10 min. Cross-linking was quenched by adding
glycine to a final concentration of 125 mM, and homo-
genized with a Dounce homogenizer in cold cell lysis buffer
(10 mM Tris-Cl, pH 8.0, 10 mM NaCl, 3 mM MgCl2, 1%
NP-40) supplemented with protease inhibitors (Roche,
#04693159001) to generate a single-cell suspension. Cells
were incubated on ice, and centrifuged at 1000×g for 10
min at 4 °C to pellet nuclei. The pellet was then resuspended
in nuclear lysis buffer. Chromatin was sheared by sonica-
tion to an average size of 200 to 1000 bp using a Bioruptor
(Diagenode, NJ), and insoluble debris was removed by
centrifugation. Immunoprecipitation was performed using
10 µg of p53 (FL393) antibody (sc-6243). Primers 5ʹ
AAAATCGGAGCTCAGCAGGCCT 3ʹ (forward) and 5ʹ
ATCAGGTCTCCACCACCCTGC 3ʹ (reverse) were used
for ChIP analysis of the p53 RE in p21 promoter. The
quantitative RT-PCR primers used to measure Tnfα and
Ccl2 p53 REs were previously published [19].

Sudan Black B (SBB) staining for senescence detection

SBB staining was performed on sections of mammary
glands from 6-month-old E-P72 and E-R72 animals by the
Texas A&M College of Veterinary Medicine histology core
laboratory, using the Sudan Black B Histochemical Stain
Kit, following the manufacturer’s protocol (American
MasterTech, KTSBBPT).

Immunohistochemistry of Ki67, CD31, IBA1, and CC3

IHC was performed by the Immunohistochemistry Core
Laboratory at Texas A&M or the Pathology Core Labora-
tory at Baylor College of Medicine using standard proto-
cols. Briefly, mammary sections from 6-month-old E-P72
and E-R72 FFPE mice were deparaffinized in xylene
(VWR, MK866802), rehydrated in graded ethanols (100%–

95%–70%) and distilled water. Antigen retrieval was per-
formed in 0.1 M Tris-HCl, pH 9.0 for 15 min. Endogenous
peroxidase activity was quenched with 3% hydrogen per-
oxide (VWR, BDH7540-2). Sections were blocked in 10%
bovine serum albumin in Phosphate Buffered Saline with
Tween 20 (PBST). Tissue sections were incubated for 45
min with primary antibody, and 1 h with HRP-conjugated
anti-rabbit IgG secondary antibody (1:500, Abcam,
ab6721). Color was developed by adding the substrate and
chromogen 3,3′-diaminobenzidine (DAKO). The primary
antibodies used in IHC staining were Ki67 (1:500, Abcam,
ab15580), CC3 (1:200, CST, 9664), IBA1 (1:500, WAKO,
019–19741), and CD31 (1:200, Abcam, ab28364). Sections
were counterstained with hematoxylin (VWR, RC353032)
and visualized with an automated upright microscope

(LeicaDM5500B, Leica Biosystem, Germany). Quantifica-
tion of images was performed using the ImmunoRatio plug-
in, Fiji software [76] or blinded, manual counting of at least
six high power fields.

Multiplex indirect immunofluorescence

FFPE mammary gland sections from 6-month-old E-P72
and E-R72 animals were deparaffinized in xylene (VWR,
MK866802) and rehydrated in graded ethanols (100%–

95%–70%) and then 1x PBS. Antigen retrieval was per-
formed by boiling in sodium citrate solution, pH 6.0 for 10
min. After washing, sections were blocked with 10% horse
serum in PBST. Tissue sections were incubated overnight at
4 °C with primary antibodies, washed, and incubated with
Alexa dye-conjugated anti-goat/anti-rabbit IgG for 1 h at
room temperature (RT). Primary antibodies were: IBA1
(1:100, WAKO, 019–19741) and IL1β (1:50, R&D Sys-
tems, AF-401-NA). Sections were visualized using an A1R
HD confocal microscope (NIKON Instruments Inc., NY).
Images were captured using NIS elements software and
blindly quantified in six high power fields.

Statistical analysis

Log-rank test for trend was performed to statistically com-
pare the Kaplan–Meier curves. Fisher’s exact test and Chi-
square tests were performed to compare tumor incidence.
When animals were sacrificed before the end of study (at 1
year of age), due to causes other than a mammary tumor,
they were censored (removed) from the Kaplan–Meier
curves on the day of sacrifice. However, the mammary
tumor incidence graphs include only animals that had a
histologically confirmed mammary tumor, or that survived
tumor-free until the end of study. Unpaired two-sided Stu-
dent’s t-test, assuming more conservative unequal variance,
was used to compare tumor growth rates, quantitative RT-
PCR, IHC, and densitometry analyses. All statistical ana-
lyses were performed using GraphPad Prism software
(version 6). A p-value < 0.05 was considered statistically
significant (*p < 0.05, **p < 0.01 and ***p < 0.001).
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