Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Poly(ADP-ribosyl)ation of OVOL2 regulates aneuploidy and cell death in cancer cells

Abstract

Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification by which poly ADP-ribose (PAR) polymers are covalently added to proteins through a PAR polymerase (PARP). Here, using proteomic approach, we identify the transcriptional regulator, OVOL2, is a novel substrate of PARP1 and can be PARylated at residues Lysine 145, Lysine 176, and Lysine 212 within its C2H2 zinc finger domains. Overexpression of PARylated OVOL2 alters cell morphology and induces lagging chromosomes and aneuploidy. To define the underlying molecular mechanism by which OVOL2 induces abnormal cell cycle and centrosome amplification, we uncover that the OVOL2 elevates the protein levels of Cyclin E by enhancing its stability. Furthermore, we identify Skp2, the E3 ubiquitin ligase of Cyclin E, as a direct target of PARylated OVOL2. Using ChIP assay, the OVOL2 binding site on the promoter region of Skp2 is mapped. To further explore the physiological effect, we show that PARylated OVOL2 can induce cell death. Furthermore, to investigate PARylated OVOL2 function in vivo, we further develop a null-mice xenograft model and generate MMTV-PyVT transgenic mice and monitor the effect of wild-type OVOL2 and non-PARylated OVOL2-3K/A mutants on tumor progression. Consistently, overexpression of wild-type OVOL2 in both null-mice xenograft and MMTV-PyVT transgenic mice displays significantly reduction of tumor progression, respectively, further indicating that the function of OVOL2 as a tumor suppressor in vivo is highly regulated by PARylation. Taken together, our study sheds new light on PARP1-induced PARylation as a critical event in the OVOL2-mediated regulation of chromosomal integrity and suppression of cancer cells growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li B, Dai Q, Li L, Nair M, Mackay DR, Dai X. Ovol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice. Genomics. 2002;80:319–25.

    Article  CAS  Google Scholar 

  2. Teng A, Nair M, Wells J, Segre JA, Dai X. Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. Biochim Biophys Acta. 2007;1772:89–95.

    Article  CAS  Google Scholar 

  3. Mackay DR, Hu M, Li B, Rheaume C, Dai X. The mouse Ovol2 gene is required for cranial neural tube development. Dev Biol. 2006;291:38–52.

    Article  CAS  Google Scholar 

  4. Unezaki S, Horai R, Sudo K, Iwakura Y, Ito S. Ovol2/Movo, a homologue of Drosophila ovo, is required for angiogenesis, heart formation and placental development in mice. Genes Cells: devoted Mol & Cell Mech. 2007;12:773–85.

    CAS  Google Scholar 

  5. Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, et al. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem. 2009;284:29125–35.

    Article  CAS  Google Scholar 

  6. Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, et al. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell. 2014;29:59–74.

    Article  CAS  Google Scholar 

  7. Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC, et al. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell. 2014;29:47–58.

    Article  Google Scholar 

  8. Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, et al. OVOL2, an inhibitor of WNT signaling, reduces invasive activities of human and mouse cancer cells and is down-regulated in human colorectal tumors. Gastroenterology. 2016;150:659–71.e16.

    Article  CAS  Google Scholar 

  9. Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun. 1963;11:39–43.

    Article  CAS  Google Scholar 

  10. Oei SL, Griesenbeck J, Ziegler M, Schweiger M. A novel function of poly(ADP-ribosyl)ation: silencing of RNA polymerase II-dependent transcription. Biochemistry. 1998;37:1465–9.

    Article  CAS  Google Scholar 

  11. Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 2009;37:3723–38.

    Article  CAS  Google Scholar 

  12. Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M, Yamaizumi Z, et al. The branching and linear portions of poly(adenosine diphosphate ribose) have the same alpha(1 leads to 2) ribose-ribose linkage. J Biol Chem. 1981;256:2916–21.

    CAS  PubMed  Google Scholar 

  13. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci. 2010;35:208–19.

    Article  CAS  Google Scholar 

  14. Leung AK. Poly(ADP-ribose): an organizer of cellular architecture. J Cell Biol. 2014;205:613–9.

    Article  CAS  Google Scholar 

  15. Amiri KI, Ha HC, Smulson ME, Richmond A. Differential regulation of CXC ligand 1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene. 2006;25:7714–22.

    Article  CAS  Google Scholar 

  16. Conde C, Mark M, Oliver FJ, Huber A, de Murcia G, Menissier-de Murcia J. Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J. 2001;20:3535–43.

    Article  CAS  Google Scholar 

  17. Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes, Chromosomes Cancer. 2003;38:339–48.

    Article  CAS  Google Scholar 

  18. Kanai M, Tong WM, Wang ZQ, Miwa M. Haploinsufficiency of poly(ADP-ribose) polymerase-1-mediated poly(ADP-ribosyl)ation for centrosome duplication. Biochem Biophys Res Commun. 2007;359:426–30.

    Article  CAS  Google Scholar 

  19. Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Samara R, Espinoza LA, Hassa PO, et al. PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene. 2003;22:8460–71.

    Article  CAS  Google Scholar 

  20. Caiafa P, Guastafierro T, Zampieri M. Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. FASEB J. 2009;23:672–8.

    Article  CAS  Google Scholar 

  21. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA. 1999;96:13978–82.

    Article  CAS  Google Scholar 

  22. Coldwell MJ, Cowan JL, Vlasak M, Mead A, Willett M, Perry LS, et al. Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle. 2013;12:3615–28.

    Article  CAS  Google Scholar 

  23. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature. 2008;451:81–5.

    Article  CAS  Google Scholar 

  24. Ong CT, Van Bortle K, Ramos E, Corces VG. Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell. 2013;155:148–59.

    Article  CAS  Google Scholar 

  25. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7:517–28.

    Article  CAS  Google Scholar 

  26. Luo X, Kraus WL, On PAR. with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012;26:417–32.

    Article  Google Scholar 

  27. Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D. The mitotic origin of chromosomal instability. Curr Biol. 2014;24:R148–9.

    Article  CAS  Google Scholar 

  28. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.

    Article  CAS  Google Scholar 

  29. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82.

    Article  CAS  Google Scholar 

  30. Silkworth WT, Nardi IK, Scholl LM, Cimini D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE. 2009;4:e6564.

    Article  Google Scholar 

  31. Fisk HA, Winey M. The mouse Mps1p-like kinase regulates centrosome duplication. Cell. 2001;106:95–104.

    Article  CAS  Google Scholar 

  32. Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. 2002;2:815–25.

    Article  CAS  Google Scholar 

  33. Salisbury JL, D’Assoro AB, Lingle WL. Centrosome amplification and the origin of chromosomal instability in breast cancer. J Mammary Gland Biol Neoplasia. 2004;9:275–83.

    Article  Google Scholar 

  34. Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 2014;510:167–71.

    Article  CAS  Google Scholar 

  35. Ogden A, Cheng A, Rida PC, Pannu V, Osan R, Clewley R, et al. Quantitative multi-parametric evaluation of centrosome declustering drugs: centrosome amplification, mitotic phenotype, cell cycle and death. Cell Death Dis. 2014;5:e1204.

    Article  CAS  Google Scholar 

  36. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12:385–92.

    Article  CAS  Google Scholar 

  37. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103:127–40.

    Article  CAS  Google Scholar 

  38. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K. Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem. 2001;276:21529–37.

    Article  CAS  Google Scholar 

  39. Singer JD, Gurian-West M, Clurman B, Roberts JM. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes & Dev. 1999;13:2375–87.

    Article  CAS  Google Scholar 

  40. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294:173–7.

    Article  CAS  Google Scholar 

  41. van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR, et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell. 2006;23:37–48.

    Article  Google Scholar 

  42. Lee S, Garfinkel MD. Characterization of Drosophila OVO protein DNA binding specificity using random DNA oligomer selection suggests zinc finger degeneration. Nucleic Acids Res. 2000;28:826–34.

    Article  CAS  Google Scholar 

  43. Gonzalez-Sanchez M, Rosato M, Chiavarino M, Puertas MJ. Chromosome instabilities and programmed cell death in tapetal cells of maize with B chromosomes and effects on pollen viability. Genetics. 2004;166:999–1009.

    Article  CAS  Google Scholar 

  44. Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget. 2015;6:38552–65.

    PubMed  PubMed Central  Google Scholar 

  45. Giam M, Rancati G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 2015;10:3.

    Article  Google Scholar 

  46. Alvarez-Gonzalez R, Jacobson MK. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry. 1987;26:3218–24.

    Article  CAS  Google Scholar 

  47. Juarez-Salinas H, Levi V, Jacobson EL, Jacobson MK. Poly(ADP-ribose) has a branched structure in vivo. J Biol Chem. 1982;257:607–9.

    CAS  PubMed  Google Scholar 

  48. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012;13:411–24.

    Article  CAS  Google Scholar 

  49. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell. 1992;70:993–1006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members in the Y-C Liou laboratory for their support and valuable discussion. We would also like to thank the Center of BioImaging Sciences (CBIS) for their technical support on confocal microscopy, and Flow Cytometry Laboratory in Yong Loo Lin School of Medicine at the National University of Singapore for FACS assay. In addition, the authors thank Protein Proteomic Center (PPC) for the technical support on protein identification. We particularly thank Dr. Boon Chuan Low for kindly providing several reagents and helpful discussions and suggestions. In addition, we thank Dr. Kyunghee Lee for helping imaging and cell cycle assay. This work was supported in part by MOE grants Tier 2, R-154-000-A61-112 and Tier 1, A15-114 from the Ministry of Education, Singapore to Y.-C.L; grants from the National Natural Science Foundation of China (Grant Numbers U1705284, 81772958) to B.-A.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-An Li or Yih-Cherng Liou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Hong, JJ., Yang, Q. et al. Poly(ADP-ribosyl)ation of OVOL2 regulates aneuploidy and cell death in cancer cells. Oncogene 38, 2750–2766 (2019). https://doi.org/10.1038/s41388-018-0615-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0615-3

This article is cited by

Search

Quick links