The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

These authors contributed equally: Katherine L. B. Borden, Carolyn A. Felix (co-senior authors).


  1. 1.

    Barrington-Trimis JL, Cockburn M, Metayer C, Gauderman WJ, Wiemels J, McKean-Cowdin R. Trends in childhood leukemia incidence over two decades from 1992 to 2013. Int J Cancer. 2017;140:1000–8.

  2. 2.

    Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30:1663–9.

  3. 3.

    Biondi A, Rizzari C, Valsecchi MG, De Lorenzo P, Arico M, Basso G, et al. Role of treatment intensification in infants with acute lymphoblastic leukemia: results of two consecutive AIEOP studies. Haematologica. 2006;91:534–7.

  4. 4.

    Hilden JM, Dinndorf PA, Meerbaum SO, Sather H, Villaluna D, Heerema NA, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood. 2006;108:441–51.

  5. 5.

    Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370:240–50.

  6. 6.

    Dreyer ZE, Hilden JM, Jones TL, Devidas M, Winick NJ, Willman CL, et al. Intensified chemotherapy without SCT in infant ALL: results from COG P9407 (Cohort 3). Pediatr Blood Cancer. 2015;62:419–26.

  7. 7.

    Ferster A, Bertrand Y, Benoit Y, Boilletot A, Behar C, Margueritte G, et al. Improved survival for acute lymphoblastic leukaemia in infancy: the experience of EORTC-Childhood Leukaemia Cooperative Group. Br J Haematol. 1994;86:284–90.

  8. 8.

    Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood. 1999;94:1209–17.

  9. 9.

    Reaman GH, Sposto R, Sensel MG, Lange BJ, Feusner JH, Heerema NA, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17:445–55.

  10. 10.

    Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351:533–42.

  11. 11.

    Cheok MH, Evans WE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer. 2006;6:117–29.

  12. 12.

    Kang H, Wilson CS, Harvey RC, Chen IM, Murphy MH, Atlas SR, et al. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119:1872–81.

  13. 13.

    Urtishak KA, Edwards AY, Wang LS, Hudome A, Robinson BW, Barrett JS, et al. Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia. Blood. 2013;121:2689–703.

  14. 14.

    Culjkovic B, Borden KL. Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer. J Oncol. 2009;2009:981679.

  15. 15.

    Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood. 2009;114:257–60.

  16. 16.

    Borden KL, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma. 2010;51:1805–15.

  17. 17.

    Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ, et al. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol. 2003;23:8992–9002.

  18. 18.

    Assouline S, Culjkovic-Kraljacic B, Bergeron J, Caplan S, Cocolakis E, Lambert C, et al. A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E. Haematologica. 2015;100:e7–9.

  19. 19.

    Culjkovic-Kraljacic B, Fernando TM, Marullo R, Calvo-Vidal N, Verma A, Yang S, et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood. 2016;127:858–68.

  20. 20.

    Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, et al. Further evidence that ribavirin interacts with eIF4E. RNA. 2005;11:1762–6.

  21. 21.

    Volpon L, Osborne MJ, Zahreddine H, Romeo AA, Borden KL. Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate. Biochem Biophys Res Commun. 2013;434:614–9.

  22. 22.

    Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci Usa. 2004;101:18105–10.

  23. 23.

    Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol. 2006;175:415–26.

  24. 24.

    Culjkovic B, Topisirovic I, Borden KL. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E. Cell Cycle. 2007;6:65–9.

  25. 25.

    Tan K, Culjkovic B, Amri A, Borden KL. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem Biophys Res Commun. 2008;375:341–5.

  26. 26.

    Barrett D, Brown VI, Grupp SA, Teachey DT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs. 2012;14:299–316.

  27. 27.

    Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia. 2010;24:1686–99.

  28. 28.

    Culjkovic B, Tan K, Orolicki S, Amri A, Meloche S, Borden KL. TheeIF4E RNA regulon promotes the Akt signaling pathway. J Cell Biol. 2008;181:51–63.

  29. 29.

    Riner A, Chan-Tack KM, Murray JS. Original research: Intravenous ribavirin—review of the FDA’s Emergency Investigational New Drug Database (1997–2008) and literature review. Postgrad Med. 2009;121:139–46.

  30. 30.

    Yang CHT, Yoo ER, Ahmed A. The role of direct-acting antivirals in the treatment of children with chronic hepatitis C. J Clin Transl Hepatol. 2017;5:59–66.

  31. 31.

    Dunn LA, Fury MG, Sherman EJ, Ho AA, Katabi N, Haque SS, et al. Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer. Head Neck. 2018;40:233–41.

  32. 32.

    Kosaka T, Maeda T, Shinojima T, Nagata H, Mizuno R, Oya M. A clinical study to evaluate the efficacy and safety of docetaxel with ribavirin in patients with progressive castration resistant prostate cancer who have previously received docetaxel alone. J Clin Oncol. 2017;35(15_suppl):e14010-e.

  33. 33.

    Kosaka T, Shinojima T, Kikuchi K, Hagiwara S, Kojima S, Hongo H, et al. A phase 1/2a trial of docetaxel plus ribavirin for reprogramming efficacy in patients with progressive metastatic castration resistant prostate cancer who have previously received docetaxel alone: DRREEM trial. J Clin Oncol. 2018;36(6_suppl):329.

  34. 34.

    Hall CB, McBride JT, Walsh EE, Bell DM, Gala CL, Hildreth S, et al. Aerosolized ribavirin treatment of infants with respiratory syncytial viral infection. A randomized double-blind study. N Engl J Med. 1983;308:1443–7.

  35. 35.

    Krilov LR. Safety issues related to the administration of ribavirin. Pediatr Infect Dis J. 2002;21:479–81.

  36. 36.

    Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318–27.

  37. 37.

    Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007;21:3232–7.

  38. 38.

    Borden KL. The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions. Translation. 2016;4:e1220899.

  39. 39.

    Asano K, Phan L, Valasek L, Schoenfeld LW, Shalev A, Clayton J, et al. A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition. Cold Spring Harb Symp Quant Biol. 2001;66:403–15.

  40. 40.

    Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, et al. Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol. 2009;29:1152–62.

  41. 41.

    Kraljacic BC, Arguello M, Amri A, Cormack G, Borden K. Inhibition of eIF4E with ribavirin cooperates with common chemotherapies in primary acute myeloid leukemia specimens. Leukemia. 2011;25:1197–200.

  42. 42.

    Zahreddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014;511:90–3.

  43. 43.

    Sanderson RD, Lalor P, Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989;1:27–35.

  44. 44.

    Roederer M. Interpretation of cellular proliferation data: avoid the panglossian. Cytom A. 2011;79:95–101.

  45. 45.

    Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E, et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol. 2003;120:846–9.

  46. 46.

    Rixe O, Fojo T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin Cancer Res. 2007;13:7280–7.

  47. 47.

    Vallee S, Fouchier F, Braguer D, Marvaldi J, Champion S. Ribavirin-induced resistance to heat shock, inhibition of the Ras-Raf-1 pathway and arrest in G(1). Eur J Pharmacol. 2000;404:49–62.

  48. 48.

    Volpin F, Casaos J, Sesen J, Mangraviti A, Choi J, Gorelick N, et al. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene. 2017;36:3037–47.

  49. 49.

    Aebi C, Headrick CL, McCracken GH, Lindsay CA. Intravenous ribavirin therapy in a neonate with disseminated adenovirus infection undergoing extracorporeal membrane oxygenation: pharmacokinetics and clearance by hemofiltration. J Pediatr. 1997;130:612–5.

  50. 50.

    Willis RC, Carson DA, Seegmiller JE. Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line. Proc Natl Acad Sci USA. 1978;75:3042–4.

  51. 51.

    Jarvis SM, Thorn JA, Glue P. Ribavirin uptake by human erythrocytes and the involvement of nitrobenzylthioinosine-sensitive (es)-nucleoside transporters. Br J Pharmacol. 1998;123:1587–92.

  52. 52.

    Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One. 2007;2:e242.

  53. 53.

    Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R, et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res. 2011;17:2874–84.

  54. 54.

    Landon AL, Muniandy PA, Shetty AC, Lehrmann E, Volpon L, Houng S, et al. MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat Commun. 2014;5:5413.

  55. 55.

    Topisirovic I, Ruiz-Gutierrez M, Borden KL. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 2004;64:8639–42.

  56. 56.

    Shi F, Len Y, Gong Y, Shi R, Yang X, Naren D, et al. Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia. PLoS One. 2015;10:e0136746.

  57. 57.

    Pettersson F, Del Rincon SV, Emond A, Huor B, Ngan E, Ng J, et al. Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis. Cancer Res. 2015;75:1102–12.

  58. 58.

    Asselin BL, Whitin JC, Coppola DJ, Rupp IP, Sallan SE, Cohen HJ. Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol. 1993;11:1780–6.

  59. 59.

    Frost BM, Eksborg S, Bjork O, Abrahamsson J, Behrendtz M, Castor A, et al. Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol. 2002;38:329–37.

  60. 60.

    Lowis SP, Pearson AD, Newell DR, Cole M. Etoposide pharmacokinetics in children: the development and prospective validation of a dosing equation. Cancer Res. 1993;53:4881–9.

  61. 61.

    Moore AS, Norris R, Price G, Nguyen T, Ni M, George R, et al. Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health. 2011;47:875–82.

  62. 62.

    Yang L, Panetta JC, Cai X, Yang W, Pei D, Cheng C, et al. Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. J Clin Oncol. 2008;26:1932–9.

  63. 63.

    Groninger E, Proost JH, de Graaf SS. Pharmacokinetic studies in children with cancer. Crit Rev Oncol Hematol. 2004;52:173–97.

  64. 64.

    McLeod HL, Evans WE. Clinical pharmacokinetics and pharmacodynamics of epipodophyllotoxins. Cancer Surv. 1993;17:253–68.

  65. 65.

    McLeod HL, Relling MV, Crom WR, Silverstein K, Groom S, Rodman JH, et al. Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl. 1992;18:S23–9.

  66. 66.

    Krishan A, Frei E 3rd. Effect of adriamycin on the cell cycle traverse and kinetics of cultured human lymphoblasts. Cancer Res. 1976;36:143–50.

  67. 67.

    Jedema I, Barge RM, Frankel AE, Willemze R, Falkenburg JH. Acute myeloid leukemia cells in G0 phase of the cell cycle that are unresponsive to conventional chemotherapy are sensitive to treatment with granulocyte-macrophage colony-stimulating factor/diphtheria toxin fusion proteins. Exp Hematol. 2004;32:188–94.

  68. 68.

    van Leeuwen IM, Rao B, Sachweh MC, Lain S. An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle. 2012;11:1851–61.

  69. 69.

    Laskin OL, Longstreth JA, Hart CC, Scavuzzo D, Kalman CM, Connor JD, et al. Ribavirin disposition in high-risk patients for acquired immunodeficiency syndrome. Clin Pharmacol Ther. 1987;41:546–55.

  70. 70.

    Glue P. The clinical pharmacology of ribavirin. Semin Liver Dis. 1999;19(Suppl 1):17–24.

  71. 71.

    Volpon L, Culjkovic-Kraljacic B, Osborne MJ, Ramteke A, Sun Q, Niesman A, et al. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E. Proc Natl Acad Sci USA. 2016;113:5263–8.

  72. 72.

    Isakovic AM, Dulovic M, Markovic I, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V, et al. Autophagy suppression sensitizes glioma cells to IMP dehydrogenase inhibition-induced apoptotic death. Exp Cell Res. 2017;350:32–40.

  73. 73.

    Tan J, Ye J, Song M, Zhou M, Hu Y. Ribavirin augments doxorubicin’s efficacy in human hepatocellular carcinoma through inhibiting doxorubicin-induced eIF4E activation. J Biochem Mol Toxicol. 2018;32:e22007.

  74. 74.

    Dai D, Chen H, Tang J, Tang Y. Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma. Biochem Biophys Res Commun. 2017;482:1259–64.

  75. 75.

    Xi C, Wang L, Yu J, Ye H, Cao L, Gong Z. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem Biophys Res Commun. 2018;503:2286–92.

  76. 76.

    Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci US. 1993;90:6175–8.

  77. 77.

    Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol. 1996;16:4754–64.

  78. 78.

    Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 2001;20:1383–93.

  79. 79.

    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

  80. 80.

    Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011;96:703–11.

  81. 81.

    Lin CJ, Malina A, Pelletier J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res. 2009;69:7491–4.

  82. 82.

    Endres CJ, Moss AM, Govindarajan R, Choi DS, Unadkat JD. The role of nucleoside transporters in the erythrocyte disposition and oral absorption of ribavirin in the wild-type and equilibrative nucleoside transporter 1−/− mice. J Pharmacol Exp Ther. 2009;331:287–96.

  83. 83.

    Smee DF, Wandersee MK, Wong MH, Bailey KW, Sidwell RW. Treatment of mannan-enhanced influenza B virus infections in mice with oseltamivir, ribavirin and viramidine. Antivir Chem Chemother. 2004;15:261–8.

  84. 84.

    Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF. In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antivir Res. 2005;68:10–7.

  85. 85.

    Khare GP, Sidwell RW, Witkowski JT, Simon LN, Robins RK. Suppression by 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (virazole, ICN 1229) of influenza virus-induced infections in mice. Antimicrob Agents Chemother. 1973;3:517–22.

  86. 86.

    Koren G, King S, Knowles S, Phillips E. Ribavirin in the treatment of SARS: a new trick for an old drug? CMAJ. 2003;168:1289–92.

  87. 87.

    Scully RE, Lipshultz SE. Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol. 2007;7:122–8.

  88. 88.

    Hijiya N, Ness KK, Ribeiro RC, Hudson MM. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer 2009;115:23–35.

  89. 89.

    Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, Camitta BM, Loonen AH, van Wering ER, et al. vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia. 2004;18:521–9.

  90. 90.

    Bunpo P, Dudley A, Cundiff JK, Cavener DR, Wek RC, Anthony TG. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J Biol Chem. 2009;284:32742–9.

  91. 91.

    Bunpo P, Cundiff JK, Reinert RB, Wek RC, Aldrich CJ, Anthony TG. The eIF2 kinase GCN2 is essential for the murine immune system to adapt to amino acid deprivation by asparaginase. J Nutr. 2010;140:2020–7.

  92. 92.

    Ogino A, Sano E, Ochiai Y, Yamamuro S, Tashiro S, Yachi K, et al. Efficacy of ribavirin against malignant glioma cell lines. Oncol Lett. 2014;8:2469–74.

  93. 93.

    Teng L, Ding D, Chen Y, Dai H, Liu G, Qiao Z, et al. Anti-tumor effect of ribavirin in combination with interferon-alpha on renal cell carcinoma cell lines in vitro. Cancer Cell Int. 2014;14:63.

  94. 94.

    Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood. 2009;113:2375–85.

  95. 95.

    Imamura T, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Ishii E, et al. Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br J Haematol. 2002;119:119–21.

  96. 96.

    Trentin L, Giordan M, Dingermann T, Basso G, Te Kronnie G, Marschalek R. Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients. Eur J Haematol. 2009;83:406–19.

  97. 97.

    Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood. 2010;115:2835–44.

  98. 98.

    Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KL. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol. 2005;25:1100–12.

  99. 99.

    Xu K, Cote TR. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform. 2011;12:341–5.

  100. 100.

    Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today. 2011;16:298–310.

  101. 101.

    Manara MC, Garofalo C, Ferrari S, Belfiore A, Scotlandi K. Designing novel therapies against sarcomas in the era of personalized medicine and economic crisis. Curr Pharm Des. 2013;19:5344–61.

  102. 102.

    Pessetto ZY, Weir SJ, Sethi G, Broward MA, Godwin AK. Drug repurposing for gastrointestinal stromal tumor. Mol Cancer Ther. 2013;12:1299–309.

  103. 103.

    Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141:827–39.

  104. 104.

    Matsuo Y, Drexler HG. Establishment and characterization of human B cell precursor-leukemia cell lines. Leuk Res. 1998;22:567–79.

  105. 105.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

  106. 106.

    Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood. 2006;107:1149–55.

  107. 107.

    Munson ME. An improved technique for calculating relative response in cellular proliferation experiments. Cytom A. 2010;77:909–10.

  108. 108.

    Pozarowski P, Grabarek J, Darzynkiewicz Z. Flow cytometry of apoptosis. Curr Protoc Cytom. 2003;Chapter 7:Unit 7 19.

Download references


Childhood ALL samples provided by CHOP CCCR Biorepository. CAF is Joshua Kahan Endowed Chair in Pediatric Leukemia Research. SPH is Jeffrey E. Perelman Distinguished Chair in the Department of Pediatrics at CHOP. KLBB holds a Canada Research Chair in Molecular Biology of the Cell Nucleus. We thank Ed Lopata and Lisa McCoy for supporting our research on KMT2A-R leukemia in honor of their son Jesse.


CAF, LSW, J.S.B., CLW, MD, and SPH supported by Leukemia & Lymphoma Society SCOR 7372-07. CAF supported by ASH Bridge Funding Program, CHOP Bridge Funding Program, Eagles Fly for Leukemia, and CHOP Hematologic Malignancies Research Fund. C.A.F. and S.K.T. supported by SU2C St. Baldrick’s Pediatric Dream Team Translational Research Grant SU2C-AACR-DT1113 (SU2C is a program of Entertainment Industry Foundation administered by AACR). CAF and DTT supported by Cookies for Kids’ Cancer Foundation. SKT supported by K08CA184418 and Rally Foundation for Childhood Cancer Research and was ALSF Scholar in Developmental Therapeutics. AES supported by ACS MRSG-12-215-01-LIB and Hyundai Hope on Wheels Scholar Award. MPC supported by R01CA198089. KLBB funded by R01CA098571 and R01CA080728 and holds a Canada Research Chair. Other support provided by U10CA98413 (COG Statistical Center), U24CA114766 (COG Specimen Banking).

Author information

Author notes

    • Karen A. Urtishak

    Present address: NewAgeSys, Inc., Princeton Junction, NJ, USA

    • Patrizia Porazzi

    Present address: Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA

    • Jeffrey S. Barrett

    Present address: Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA

    • Blaine W. Robinson

    Present address: Therapy Acceleration Program, Leukemia & Lymphoma Society, Rye Brook, NY, USA

  1. These authors contributed equally: Karen A. Urtishak, Li-San Wang, Biljana Culjkovic-Kraljacic (co-first authors).


  1. Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    • Karen A. Urtishak
    • , James W. Davenport
    • , Patrizia Porazzi
    • , Tiffaney L. Vincent
    • , David T. Teachey
    • , Sarah K. Tasian
    • , Alix E. Seif
    • , Blaine W. Robinson
    • , Stephen P. Hunger
    •  & Carolyn A. Felix
  2. Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA

    • Li-San Wang
    •  & Jonni S. Moore
  3. Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Montreal, QC, Canada

    • Biljana Culjkovic-Kraljacic
    •  & Katherine L. B. Borden
  4. Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA

    • David T. Teachey
    • , Sarah K. Tasian
    • , Alix E. Seif
    • , Jeffrey S. Barrett
    • , Stephen P. Hunger
    •  & Carolyn A. Felix
  5. Division of Hematology and Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA

    • Shenghao Jin
    •  & Martin P. Carroll
  6. Division of Clinical Pharmacology & Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    • Jeffrey S. Barrett
  7. Department of Pathology and UNM Cancer Center, University of New Mexico Health Services, Albuquerque, NM, USA

    • I-Ming L. Chen
    • , Richard C. Harvey
    •  & Cheryl L. Willman
  8. Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA

    • Andrew J. Carroll
  9. Department of Pathology, Ohio State University, Columbus, OH, USA

    • Nyla A. Heerema
  10. Children’s Oncology Group, Department of Biostatistics, Gainesville, FL, USA

    • Meenakshi Devidas
  11. Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA

    • ZoAnn E. Dreyer
  12. Children’s Hospital Colorado and The University of Colorado School of Medicine, Aurora, CO, USA

    • Joanne M. Hilden


  1. Search for Karen A. Urtishak in:

  2. Search for Li-San Wang in:

  3. Search for Biljana Culjkovic-Kraljacic in:

  4. Search for James W. Davenport in:

  5. Search for Patrizia Porazzi in:

  6. Search for Tiffaney L. Vincent in:

  7. Search for David T. Teachey in:

  8. Search for Sarah K. Tasian in:

  9. Search for Jonni S. Moore in:

  10. Search for Alix E. Seif in:

  11. Search for Shenghao Jin in:

  12. Search for Jeffrey S. Barrett in:

  13. Search for Blaine W. Robinson in:

  14. Search for I-Ming L. Chen in:

  15. Search for Richard C. Harvey in:

  16. Search for Martin P. Carroll in:

  17. Search for Andrew J. Carroll in:

  18. Search for Nyla A. Heerema in:

  19. Search for Meenakshi Devidas in:

  20. Search for ZoAnn E. Dreyer in:

  21. Search for Joanne M. Hilden in:

  22. Search for Stephen P. Hunger in:

  23. Search for Cheryl L. Willman in:

  24. Search for Katherine L. B. Borden in:

  25. Search for Carolyn A. Felix in:

Conflict of interest

CAF owns an unlicensed patent relevant to genetic classification of leukemia cases: Methods and Kits for Analysis of Chromosomal Rearrangements Associated with Leukemia. United States of America 6,368,791. 9 April 2002. CAF owns unlicensed, unrelated patents: United States of America Patent Numbers 6,174,684; and 8,642,265 B2. CAF and LSW submitted an unrelated patent application: United States of America Patent Application 61/490,975. The remaining authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Carolyn A. Felix.

Electronic supplementary material

About this article

Publication history