Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation

Abstract

Pancreatic cancer remains one of the deadliest human cancers despite current advances in conventional therapeutics including surgery and adjuvant therapies. Here, we showed that LZ1, a peptide derived from a snake venom cathelicidin, significantly inhibited growth of pancreatic cancer cells by inducing autophagy-dependent cell death both in vitro and in vivo. The LZ1-induced cell death was blocked by pharmacological or genetic inhibition of autophagy. In orthotopic model of pancreatic cancer, systemic administration of LZ1 (1–4 mg/kg) exhibited remarkable antitumor efficacy, significantly prolonged mice survival, and showed negligible adverse effects by comparison with gemcitabine (20 mg/kg). Mechanistic studies revealed that LZ1 acts through binding to nucleolin, whose expression on cell surface is frequently increased in pancreatic cancer cells. LZ1 binding triggers degradation of surface-expressed nucleolin. This leads to activation of 5′-AMP kinase which results in suppression of mTORC1 activity and induction of autophagic flux. These data suggest that LZ1, targeting nucleolin–AMPK–autophagy axis, is a promising lead for the development of therapeutic agents against pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  Google Scholar 

  2. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  Google Scholar 

  3. Hidalgo M, Cascinu S, Kleeff J, Labianca R, Lohr JM, Neoptolemos J, et al. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2015;15:8–18.

    Article  Google Scholar 

  4. de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;741:8–16.

    Article  Google Scholar 

  5. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  Google Scholar 

  6. Shi S, Yao W, Xu J, Long J, Liu C, Yu X. Combinational therapy: new hope for pancreatic cancer? Cancer Lett. 2012;317:127–35.

    Article  CAS  Google Scholar 

  7. Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol. 2007;17:80–86.

    Article  CAS  Google Scholar 

  8. Berger CM, Gaume X, Bouvet P. The roles of nucleolin subcellular localization in cancer. Biochimie. 2015;113:78–85.

    Article  CAS  Google Scholar 

  9. Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood. 2006;107:3564–71.

    Article  CAS  Google Scholar 

  10. Said EA, Courty J, Svab J, Delbe J, Krust B, Hovanessian AG. Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J. 2005;272:4646–59.

    Article  CAS  Google Scholar 

  11. Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem. 2002;277:37492–502.

    Article  CAS  Google Scholar 

  12. Krust B, Vienet R, Cardona A, Rougeot C, Jacotot E, Callebaut C, et al. The anti-HIV pentameric pseudopeptide HB-19 is preferentially taken up in vivo by lymphoid organs where it forms a complex with nucleolin. Proc Natl Acad Sci USA. 2001;98:14090–5.

    Article  CAS  Google Scholar 

  13. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008;68:2358–65.

    Article  CAS  Google Scholar 

  14. Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70:8617–29.

    Article  CAS  Google Scholar 

  15. Krust B, El Khoury D, Nondier I, Soundaramourty C, Hovanessian AG. Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type. BMC Cancer. 2011;11:333.

    Article  CAS  Google Scholar 

  16. Benedetti E, Antonosante A, d’Angelo M, Cristiano L, Galzio R, Destouches D, et al. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model. Oncotarget. 2015;6:42091–104.

    PubMed Central  Google Scholar 

  17. Palmieri D, Richmond T, Piovan C, Sheetz T, Zanesi N, Troise F, et al. Human anti-nucleolin recombinant immunoagent for cancer therapy. Proc Natl Acad Sci USA. 2015;112:9418–23.

    Article  CAS  Google Scholar 

  18. Gilles ME, Maione F, Cossutta M, Carpentier G, Caruana L, Di Maria S, et al. Nucleolin targeting impairs the progression of pancreatic cancer and promotes the normalization of tumor vasculature. Cancer Res. 2016;76:7181–93.

    Article  CAS  Google Scholar 

  19. Wu WK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, et al. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int J Cancer. 2010;127:1741–7.

    Article  CAS  Google Scholar 

  20. Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72:6512–23.

    Article  CAS  Google Scholar 

  21. Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, et al. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol. 2013;707:1–10.

    Article  CAS  Google Scholar 

  22. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.

    Article  CAS  Google Scholar 

  23. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.

    CAS  Google Scholar 

  24. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  Google Scholar 

  25. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.

    Article  CAS  Google Scholar 

  26. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79:1889–92.

    Article  CAS  Google Scholar 

  27. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  Google Scholar 

  28. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23.

    Article  CAS  Google Scholar 

  29. Hovanessian AG. Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res. 2006;16:174–81.

    Article  CAS  Google Scholar 

  30. Nazli O, Bozdag AD, Tansug T, Kir R, Kaymak E. The diagnostic importance of CEA and CA 19-9 for the early diagnosis of pancreatic carcinoma. Hepatogastroenterology. 2000;47:1750–2.

    CAS  Google Scholar 

  31. Kim MP, Gallick GE. Gemcitabine resistance in pancreatic cancer: picking the key players. Clin Cancer Res. 2008;14:1284–5.

    Article  CAS  Google Scholar 

  32. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  CAS  Google Scholar 

  33. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9:1004–10.

    Article  CAS  Google Scholar 

  34. Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy. 2012;8:1–3.

    Article  Google Scholar 

  35. Yang A, Herter-Sprie G, Zhang H, Lin EY, Biancur D, Wang X. et al. Autophagy sustains pancreatic cancer growth through both cell autonomous and non-autonomous mechanisms. Cancer Discov. 2018;8:276–87.

    Article  CAS  Google Scholar 

  36. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29.

    Article  CAS  Google Scholar 

  37. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015;22:367–76.

    Article  CAS  Google Scholar 

  38. Zhou S, Zhao L, Kuang M, Zhang B, Liang Z, Yi T, et al. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett. 2012;323:115–27.

    Article  CAS  Google Scholar 

  39. Hamma-Kourbali Y, Bermek O, Bernard-Pierrot I, Karaky R, Martel-Renoir D, Frechault S, et al. The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells. BMC Cancer. 2011;11:212.

    Article  CAS  Google Scholar 

  40. Galzio R, Rosati F, Benedetti E, Cristiano L, Aldi S, Mei S, et al. Glycosilated nucleolin as marker for human gliomas. J Cell Biochem. 2012;113:571–9.

    Article  CAS  Google Scholar 

  41. Li F, Lu J, Liu J, Liang C, Wang M, Wang L, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun. 2017;8:1390.

    Article  Google Scholar 

  42. Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, et al. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res. 2011;71:3296–305.

    Article  CAS  Google Scholar 

  43. Chen CM, Chiang SY, Yeh NH. Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J Biol Chem. 1991;266:7754–8.

    CAS  Google Scholar 

  44. Fang SH, Yeh NH. The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp Cell Res. 1993;208:48–53.

    Article  CAS  Google Scholar 

  45. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem. 1999;274:11721–6.

    Article  CAS  Google Scholar 

  46. Farin K, Schokoroy S, Haklai R, Cohen-Or I, Elad-Sfadia G, Reyes-Reyes ME, et al. Oncogenic synergism between ErbB1, nucleolin, and mutant Ras. Cancer Res. 2011;71:2140–51.

    Article  CAS  Google Scholar 

  47. Goldshmit Y, Trangle SS, Kloog Y, Pinkas-Kramarski R. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma. Oncotarget. 2014;5:8602–13.

    Article  Google Scholar 

  48. He X, Shen C, Lu Q, Li J, Wei Y, He L, et al. Prokineticin 2 plays a pivotal role in psoriasis. EBioMedicine. 2016;13:248–61.

    Article  Google Scholar 

  49. Khanbolooki S, Nawrocki ST, Arumugam T, Andtbacka R, Pino MS, Kurzrock R, et al. Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther. 2006;5:2251–60.

    Article  CAS  Google Scholar 

  50. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21761142002 and 81770464), Ministry of Science and Technology (2018ZX09301043-003), Chinese Academy of Science (QYZDJ-SSWSMC012, SAJC201606, the West Light Foundation and Youth Innovation Promotion Association (2017432)) and Yunnan Provincial Science and Technology Department (2017FB038, 2015BC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Jin, Xudong Zhao or Ren Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Cheng Xu, Yunfei Wang, Qiu Tu, Zhiye Zhang

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, Y., Tu, Q. et al. Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation. Oncogene 38, 1832–1844 (2019). https://doi.org/10.1038/s41388-018-0556-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0556-x

This article is cited by

Search

Quick links