Targeting colon cancer with the novel STAT3 inhibitor bruceantinol


STAT3, a transcriptional mediator of oncogenic signaling, is constitutively active in ~70% of human cancers. The development of STAT3 inhibitors remains an active area of research as no inhibitors have yet to be approved for the treatment of human cancer. Herein, we revealed that bruceantinol (BOL) is a novel STAT3 inhibitor demonstrating potent antitumor activity in in vitro and in vivo human colorectal cancer (CRC) models. BOL strongly inhibited STAT3 DNA-binding ability (IC50 = 2.4 pM), blocked the constitutive and IL-6-induced STAT3 activation in a dose- and time-dependent manner, and suppressed transcription of STAT3 target genes encoding anti-apoptosis factors (MCL-1, PTTG1, and survivin) and cell-cycle regulators (c-Myc). Structure–activity relationship studies demonstrated that the C15 side chain on BOL affected its ability to bind STAT3. Administration of 4 mg/kg BOL significantly inhibited CRC tumor xenografts [p < 0.001], but no effect was observed in a STAT3−/− tumor model. Additional studies showed that BOL effectively sensitized MEK inhibitors through repression of p-STAT3 and MCL-1 induction, known resistance mechanisms of MEK inhibition. Taken together, our findings suggest BOL is a novel therapeutic STAT3 inhibitor that can be used either alone or in combination with MEK inhibitors for the treatment of human CRC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    USPST Force, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, et al. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2016;315:2564–75.

    Article  Google Scholar 

  2. 2.

    Kohne CH, Lenz HJ. Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist. 2009;14:478–88.

    Article  Google Scholar 

  3. 3.

    Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    CAS  Article  Google Scholar 

  4. 4.

    Morikawa T, Baba Y, Yamauchi M, Kuchiba A, Nosho K, Shima K, et al. STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. Clin Cancer Res. 2011;17:1452–62.

    CAS  Article  Google Scholar 

  5. 5.

    Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670–95.

    CAS  Article  Google Scholar 

  6. 6.

    Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol. 2011;4:687–99.

    Article  Google Scholar 

  7. 7.

    Yan Z, Guo GF, Zhang B. Research of Brucea javanica against cancer. Chin J Integr Med. 2016;23:153–60.

    Article  Google Scholar 

  8. 8.

    Zhao M, Lau ST, Leung PS, Che CT, Lin ZX. Seven quassinoids from Fructus Bruceae with cytotoxic effects on pancreatic adenocarcinoma cell lines. Phytother Res. 2011;25:1796–800.

    CAS  Article  Google Scholar 

  9. 9.

    Yang J, Li S, Xie C, Ye H, Tang H, Chen L, et al. Anti-inflammatory activity of ethyl acetate fraction of the seeds of Brucea Javanica. J Ethnopharmacol. 2013;147:442–6.

    Article  Google Scholar 

  10. 10.

    Wiseman CL, Yap HY, Bedikian AY, Bodey GP, Blumenschein GR. Phase II trial of bruceantin in metastatic breast carcinoma. Am J Clin Oncol. 1982;5:389–91.

    CAS  Article  Google Scholar 

  11. 11.

    Arseneau JC, Wolter JM, Kuperminc M, Ruckdeschel JC. A Phase II study of Bruceantin (NSC-165, 563) in advanced malignant melanoma. Invest New Drugs. 1983;1:239–42.

    CAS  PubMed  Google Scholar 

  12. 12.

    Cuendet M, Christov K, Lantvit DD, Deng Y, Hedayat S, Helson L, et al. Multiple myeloma regression mediated by bruceantin. Clin Cancer Res. 2004;10:1170–9.

    CAS  Article  Google Scholar 

  13. 13.

    Castelletti D, Fiaschetti G, Di Dato V, Ziegler U, Kumps C, De Preter K, et al. The quassinoid derivative NBT-272 targets both the AKT and ERK signaling pathways in embryonal tumors. Mol Cancer Ther. 2010;9:3145–57.

    CAS  Article  Google Scholar 

  14. 14.

    Wu S, Guo Z, Hopkins CD, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866–79.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhou C, Tong Y, Wawrowsky K, Melmed S. PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility. Oncogene. 2014;33:851–61.

    CAS  Article  Google Scholar 

  16. 16.

    Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell. 2014;26:207–21.

    CAS  Article  Google Scholar 

  17. 17.

    Oh SB, Hwang CJ, Song SY, Jung YY, Yun HM, Sok CH, et al. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. 2014;353:95–103.

    CAS  Article  Google Scholar 

  18. 18.

    Liao LL, Kupchan SM, Horwitz SB. Mode of action of the antitumor compound bruceantin, an inhibitor of protein synthesis. Mol Pharmacol. 1976;12:167–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vartanian S, Ma TP, Lee J, Haverty PM, Kirkpatrick DS, Yu K, et al. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis. Mol Cell Proteom. 2016;15:1220–31.

    CAS  Article  Google Scholar 

  20. 20.

    Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010;2:45ra59.

    Article  Google Scholar 

  21. 21.

    Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J. 2005;392:335–44.

    CAS  Article  Google Scholar 

  22. 22.

    Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA. 2001;98:7319–24.

    CAS  Article  Google Scholar 

  23. 23.

    Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W, Pezzuto JM. Brusatol-mediated induction of leukemic cell differentiation and G(1) arrest is associated with down-regulation of c-myc. Leukemia. 2002;16:2275–84.

    CAS  Article  Google Scholar 

  24. 24.

    Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, et al. MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene. 2014;33:1850–61.

    CAS  Article  Google Scholar 

  25. 25.

    Zhao C, Xiao H, Wu X, Li C, Liang G, Yang S, et al. Rational combination of MEK inhibitor and the STAT3 pathway modulator for the therapy in K-Ras mutated pancreatic and colon cancer cells. Oncotarget. 2015;6:14472–87.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gurel G, Blaha G, Moore PB, Steitz TA. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J Mol Biol. 2009;389:146–56.

    CAS  Article  Google Scholar 

  27. 27.

    Huang W, Dong Z, Chen Y, Wang F, Wang CJ, Peng H, et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene. 2016;35:783–92.

    CAS  Article  Google Scholar 

  28. 28.

    Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, Gagea M, et al. Multi-functional effects of a small-molecule STAT3 inhibitor on NASH and HCC in mice. Clin Cancer Res. 2017;23:5537–46.

    CAS  Article  Google Scholar 

  29. 29.

    Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Pro Natl Acad Sci USA. 2015;112:1839–44.

    CAS  Article  Google Scholar 

  30. 30.

    Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov. 2012;2:694–705.

    CAS  Article  Google Scholar 

  31. 31.

    Zhao C, Wang W, Yu W, Jou D, Wang Y, Ma H, et al. A novel small molecule STAT3 inhibitor, LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells. Oncotarget. 2016;7:12917–26.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wei N, Chu E, Wipf P, Schmitz JC. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130–41.

    CAS  Article  Google Scholar 

  33. 33.

    Wei N, Chu E, Wu SY, Wipf P, Schmitz JC. The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells. Oncotarget. 2015;6:4745–56.

    PubMed  Google Scholar 

Download references


This project was supported, in part, by funds from the UPCI NCI Cancer Center Support Grant Developmental Funds (P30CA047904). This project used the UPCI Cytometry Facility and the UPCI Animal Facility, which are supported, in part, by P30CA047904. This project also was supported, in part, by Grants (No. 81202556) from the China National Natural Sciences Foundation. This project is funded, in part, under a grant with the Pennsylvania Department of Health.

Author information



Corresponding authors

Correspondence to Ning Wei or John C. Schmitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Li, J., Fang, C. et al. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene 38, 1676–1687 (2019).

Download citation

Further reading