Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells

Abstract

Interleukin-8 (IL-8) is a pro-inflammatory chemokine that is associated with induction of chemotaxis and degranulation of neutrophils. IL-8 is overexpressed in many tumors, including colon and lung cancer, and recent studies demonstrated essential roles for IL-8 in tumor progression within the tumor microenvironment. However, the molecular mechanism underlying the functions of IL-8 in tumor progression is unclear. In this study, we found that IL-8 is overexpressed in colon and lung cancer cells with cancer stem cell (CSC)-like characteristics and is required for CSC properties, including tumor-initiating abilities. These findings suggest that IL-8 plays an essential role in the development of CSCs. We also showed that IL-8 stimulation of colon and lung cancer cells-induced glucose uptake and expressions of glucose transporter 3 (GLUT3) and glucosamine fructose-6-phosphate aminotransferase (GFAT), a regulator of glucose flux to the hexosamine biosynthetic pathway, resulting in enhancement of protein O-GlcNAcylation. We demonstrated that these events are required for the generation and maintenance CSC-like characteristics of colon and lung cancer cells. Moreover, an O-GlcNAcylation inhibitor, OSMI1, reduced CSC number and tumor development in vivo. Together, these results reveal that IL-8-induced O-GlcNAcylation is required for generation and maintenance of CSCs of colon and lung cancer cells and suggests this regulatory pathway as a candidate therapeutic target of CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:6735–41.

    Article  CAS  PubMed  Google Scholar 

  3. Shahzad A, Knapp M, Lang I, Kohler G. Interleukin 8 (IL-8) - a universal biomarker? Int Arch Med. 2010;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Standiford TJ, Kunkel SL, Basha MA, Chensue SW, Lynch JP 3rd, Toews GB, et al. Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest. 1990;86:1945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alfaro C, Sanmamed MF, Rodriguez-Ruiz ME, Teijeira A, Onate C, Gonzalez A, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev. 2017;60:24–31.

    Article  CAS  PubMed  Google Scholar 

  7. David JM, Dominguez C, Hamilton DH, Palena C.The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines. 2016;4:22. https://doi.org/10.3390/vaccines4030022

  8. Liu Q, Li A, Yu S, Qin S, Han N, Pestell RG, et al. DACH1 antagonizes CXCL8 to repress tumorigenesis of lung adenocarcinoma and improve prognosis. J Hematol Oncol. 2018;11:53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi L, Wang L, Wang B, Cretoiu SM, Wang Q, Wang X, et al. Regulatory mechanisms of betacellulin in CXCL8 production from lung cancer cells. J Transl Med. 2014;12:70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Wang Y, Wang S, Cai J, Shi J, Sui X, et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget. 2015;6:42825–37.

    PubMed  PubMed Central  Google Scholar 

  11. Singh S, Wu S, Varney M, Singh AP, Singh RK. CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvasc Res. 2011;82:318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Visciano C, Liotti F, Prevete N, Cali G, Franco R, Collina F, et al. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene. 2015;34:5175–86.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, Chang SC, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 2011;141:279–91. 291 e271-275

    Article  CAS  PubMed  Google Scholar 

  14. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  15. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    Article  CAS  PubMed  Google Scholar 

  16. Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12:170–80.

    Article  CAS  PubMed  Google Scholar 

  17. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9:628–38.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.

    Article  CAS  PubMed  Google Scholar 

  19. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.

    Article  CAS  PubMed  Google Scholar 

  21. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008;105:13427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corbet C. Stem cell metabolism in cancer and healthy tissues: pyruvate in the limelight. Front Pharmacol. 2017;8:958.

    Article  PubMed  Google Scholar 

  23. Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10:611–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kuang R, Jahangiri A, Mascharak S, Nguyen A, Chandra A, Flanigan PM, et al. GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance. JCI Insight. 2017;2:e88815.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mo L, Chen Q, Yang Y, Rui XP, Gu J. High expression of GLUT1 and GLUT3 correlate with neoadjuvant chemotherapy ineffectiveness breast cancer patients. Int J Clin Exp Pathol. 2016;9:9555–61.

    CAS  Google Scholar 

  26. Zhang Y, Wei C, Xi J, Tang Z, Liang C. Glucose transporter 3 performs a critical role in mTOR-mediated oncogenic glycolysis and tumorigenesis. Oncol Lett. 2015;9:2809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodrigues-Ferreira C, da Silva AP, Galina A. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J Bioenerg Biomembr. 2012;44:39–49.

    Article  CAS  PubMed  Google Scholar 

  28. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hardiville S, Hart GW. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 2014;20:208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oikari S, Makkonen K, Deen AJ, Tyni I, Karna R, Tammi RH, et al. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis. Glycobiology. 2016;26:710–22.

    Article  CAS  PubMed  Google Scholar 

  32. Dong T, Kang X, Liu Z, Zhao S, Ma W, Xuan Q, et al. Altered glycometabolism affects both clinical features and prognosis of triple-negative and neoadjuvant chemotherapy-treated breast cancer. Tumour Biol. 2016;37:8159–68.

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Shao M, Peng P, Yang C, Song S, Duan F, et al. High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget. 2017;8:19205–17.

    PubMed  PubMed Central  Google Scholar 

  34. King JB, West MB, Cook PF, Hanigan MH. A novel, species-specific class of uncompetitive inhibitors of gamma-glutamyl transpeptidase. J Biol Chem. 2009;284:9059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo H, Zhang B, Nairn AV, Nagy T, Moremen KW, Buckhaults P, et al. O-linked N-acetylglucosamine (O-GlcNAc) expression levels epigenetically regulate colon cancer tumorigenesis by affecting the cancer stem cell compartment via modulating expression of transcriptional factor MYBL1. J Biol Chem. 2017;292:4123–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta. 2011;1812:514–9.

    Article  CAS  PubMed  Google Scholar 

  37. Singh JP, Zhang K, Wu J, Yang X. O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 2015;356:244–50.

    Article  CAS  PubMed  Google Scholar 

  38. Slawson C, Hart GW. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer. 2011;11:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.

    Article  CAS  PubMed  Google Scholar 

  40. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  41. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol. 2008;4:483–90.

    Article  CAS  PubMed  Google Scholar 

  42. Liu BQ, Meng X, Li C, Gao YY, Li N, Niu XF, et al. Glucosamine induces cell death via proteasome inhibition in human ALVA41 prostate cancer cell. Exp Mol Med. 2011;43:487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, et al. A small molecule that inhibits OGT activity in cells. ACS Chem Biol. 2015;10:1392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010;29:2831–42.

    Article  CAS  PubMed  Google Scholar 

  45. Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer. 2011;104:1410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng J, Xu L, Pan Y, Yu S, Wang H, Kennedy D, et al. Sox2 modulates motility and enhances progression of colorectal cancer via the Rho-ROCK signaling pathway. Oncotarget. 2017;8:98635–45.

    PubMed  PubMed Central  Google Scholar 

  47. Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, et al. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA. 2014;111:1355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell. 2012;11:62–74.

    Article  CAS  PubMed  Google Scholar 

  49. Allison DF, Wamsley JJ, Kumar M, Li D, Gray LG, Hart GW, et al. Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-kappaB acetylation and transcription. Proc Natl Acad Sci USA. 2012;109:16888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem. 2013;288:15121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol. 2011;7:174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bareiss PM, Paczulla A, Wang H, Schairer R, Wiehr S, Kohlhofer U, et al. SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res. 2013;73:5544–55.

    Article  CAS  PubMed  Google Scholar 

  53. Nakajima W, Sharma K, Lee JY, Maxim NT, Hicks MA, Vu TT, et al. DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget. 2016;7:36353–65.

    PubMed  PubMed Central  Google Scholar 

  54. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE. 2013;8:e74250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Abe. Y. Nakajima, A. Tanimura, and I. Uehara for discussion, and Y. Asano, M. Kawagoe and T. Takatera for technical support. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Sports, and Culture of Japan (MEXT/JSPS KAKEN Grant Number 17H04554). We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author contributions

M.S. and N.T. designed the study, analyzed the data, and wrote the manuscript. M.S. performed the experiments, and M.S. and N.T. analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M., Tanaka, N. IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells. Oncogene 38, 1520–1533 (2019). https://doi.org/10.1038/s41388-018-0533-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0533-4

This article is cited by

Search

Quick links