Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment

Abstract

Cancer cells are in continuous communication with the surrounding microenvironment and this communication can affect tumor evolution. In this work, we show that phospholipase D2 (PLD2) was overexpressed in colon tumors and is secreted by cancer cells, inducing senescence in neighboring fibroblasts. This occurs through its lipase domain. Senescence induced by its product, phosphatidic acid, leads to a senescence-associated secretory phenotype (SASP) able to increase the stem properties of cancer cells. This increase in stemness occurs by Wnt pathway activacion. This closes a feedback loop in which senescence acts as a crosspoint for the generation of CSCs mediated by phospholipid metabolism. We also demonstrate the connexion of both phenomena in mouse models in vivo showing that a high PLD2 expression increased stemness and tumorigenesis. Thus, the patients with colon cancer show high levels of PLD2 and SASP factor genes expression correlating with Wnt pathway activation. Therefore, we demonstrate that tumor cell-secreted PLD2 contributes to tumor development by modifying the microenvironment, making it a possible therapeutic target for cancer treatment. This mechanism may also explain the high levels of Wnt pathway activation in colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  2. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12:767–75.

    Article  CAS  PubMed  Google Scholar 

  3. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 1998;12:2997–3007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436:660–5.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436:642.

    Article  CAS  PubMed  Google Scholar 

  10. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    Article  CAS  PubMed  Google Scholar 

  11. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, et al. Monitoring tumorigenesis and senescence in vivo with ap16(INK4a)-luciferase model. Cell. 2013;152:340–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.

    Article  CAS  PubMed  Google Scholar 

  14. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  CAS  PubMed  Google Scholar 

  15. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17:1205–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Frohman MA, Sung TC, Morris AJ. Mammalian phospholipase D structure and regulation. Biochim Biophys Acta. 1999;1439:175–86.

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q, Cook S, et al. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem. 1997;272:3860–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez I, Arnold RS, Lambeth JD. Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J Biol Chem. 1998;273:12846–52.

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Frankel P, Jackson D, Rotunda T, Boshans RL, D’Souza-Schorey C, et al. Elevated phospholipase D activity in H-Ras- but not K-Ras-transformed cells by the synergistic action of RalA and ARF6. Mol Cell Biol. 2003;23:645–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zheng Y, Rodrik V, Toschi A, Shi M, Hui L, Shen Y, et al. Phospholipase D couples survival and migration signals in stress response of human cancer cells. J Biol Chem. 2006;281:15862–8.

    Article  CAS  PubMed  Google Scholar 

  23. Foster DA, Xu L. Phospholipase D in cell proliferation and cancer. Mol Cancer Res. 2003;1:789–800.

    CAS  PubMed  Google Scholar 

  24. Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene. 2013;32:5551–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Song JG, Pfeffer LM, Foster DA. v-Src increases diacylglycerol levels via a type D phospholipase-mediated hydrolysis of phosphatidylcholine. Mol Cell Biol. 1991;11:4903–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Carnero A, Cuadrado A, del Peso L, Lacal JC. Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells. Oncogene. 1994;9:1387–95.

    CAS  PubMed  Google Scholar 

  27. Carnero A, Dolfi F, Lacal JC. ras-p21 activates phospholipase D and A2, but not phospholipase C or PKC, in Xenopus laevis oocytes. J Cell Biochem. 1994;54:478–86.

    Article  CAS  PubMed  Google Scholar 

  28. Carnero A, Lacal JC. Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study. Mol Cell Biol. 1995;15:1094–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Frankel P, Ramos M, Flom J, Bychenok S, Joseph T, Kerkhoff E, et al. Ral and Rho-dependent activation of phospholipase D in v-Raf-transformed cells. Biochem Biophys Res Commun. 1999;255:502–7.

    Article  CAS  PubMed  Google Scholar 

  30. Oshimoto H, Okamura S, Yoshida M, Mori M. Increased activity and expression of phospholipase D2 in human colorectal cancer. Oncol Res. 2003;14:31–37.

    Article  CAS  PubMed  Google Scholar 

  31. Saito M, Iwadate M, Higashimoto M, Ono K, Takebayashi Y, Takenoshita S. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.

    CAS  PubMed  Google Scholar 

  32. Jeon H, Kwak D, Noh J, Lee MN, Lee CS, Suh PG, et al. Phospholipase D2 induces stress fiber formation through mediating nucleotide exchange for RhoA. Cell Signal. 2011;23:1320–6.

    Article  CAS  PubMed  Google Scholar 

  33. Mahankali M, Peng HJ, Henkels KM, Dinauer MC, Gomez-Cambronero J. Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proc Natl Acad Sci USA. 2011;108:19617–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bach JP, Rinn B, Meyer B, Dodel R, Bacher M. Role of MIF in inflammation and tumorigenesis. Oncology. 2008;75:127–33.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 1997;57:3305–13.

    CAS  PubMed  Google Scholar 

  36. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267:271–85.

    Article  CAS  PubMed  Google Scholar 

  37. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72:2768–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84:2302–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  40. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  41. Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, et al. Phospholipase signalling networks in cancer. Nat Rev Cancer. 2012;12:782–92.

    Article  CAS  PubMed  Google Scholar 

  42. Venable ME, Blobe GC, Obeid LM. Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem. 1994;269:26040–4.

    CAS  PubMed  Google Scholar 

  43. Lee YH, Bae YS. Phospholipase D2 downregulation induces cellular senescence through a reactive oxygen species-p53-p21Cip1/WAF1 pathway. FEBS Lett. 2014;588:3251–8.

    Article  CAS  PubMed  Google Scholar 

  44. Perez-Mancera PA, Young AR, Narita M. Inside and out: the activities of senescence in cancer. Nat Rev Cancer. 2014;14:547–58.

    Article  CAS  PubMed  Google Scholar 

  45. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.

    Article  CAS  PubMed  Google Scholar 

  46. Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379–89.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, Hallman MA, et al. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol. 2008;74:574–84.

    Article  CAS  PubMed  Google Scholar 

  48. Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Min do S. Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res. 2010;70:4233–42.

    Article  CAS  PubMed  Google Scholar 

  49. Kang DW, Min do S. Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. PLoS ONE. 2010;5:e12109.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ferrer I, Verdugo-Sivianes EM, Castilla MA, Melendez R, Marin JJ, Munoz-Galvan S et al. Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene. 2015;35:2777–88.

  51. Henkels KM, Farkaly T, Mahankali M, Segall JE, Gomez-Cambronero J. Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). J Mol Biol. 2011;408:850–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Mahankali M, Henkels KM, Alter G, Gomez-Cambronero J. Identification of the catalytic site of phospholipase D2 (PLD2) newly described guanine nucleotide exchange factor activity. J Biol Chem. 2012;287:41417–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Perez M, Lucena-Cacace A, Marin-Gomez LM, Padillo-Ruiz J, Robles-Frias MJ, Saez C, et al. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget. 2016;7:33111–24.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the donors, the HUVR-IBiS Biobank (Andalusian Public Health System Biobank and ISCIII-Red de Biobancos PT13/0010/0056) for the human specimens used in this study, Carolina Castilla for the assistance with IHC assays and Carmen Saez for histological analyses. SM-G was supported by a Sara Borrell grant from ISCIII (CD16/00230). AC lab was supported by grants from the Spanish Ministry of Economy and Competitivity, Plan Estatal de I + D + I 2013–2016, ISCIII (Fis: PI15/00045), and CIBER de Cáncer (CD16/12/00275), co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848), and Consejeria de Salud of the Junta de Andalucia (PI-0397–2017). This work was also supported by Fundacion BBVA. Especial thanks to the AECC Foundation for supporting this work. JG-C is supported by Grant HL056653–14 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amancio Carnero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Galván, S., Lucena-Cacace, A., Perez, M. et al. Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment. Oncogene 38, 1309–1323 (2019). https://doi.org/10.1038/s41388-018-0527-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0527-2

This article is cited by

Search

Quick links