Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis

A Correction to this article was published on 10 June 2019

This article has been updated

Abstract

Both chemokine receptors (CXCRs) 7 and 4 can facilitate immune cell migration and mediate a vast array of physiological and pathological events. Herein we report, in both human and animal studies, that these two CXCRs can form heterodimers in vivo and promote colorectal tumorigenesis through histone demethylation. Compared with adjacent non-neoplastic tissue, human colorectal cancer (CRC) tissue showed a significant higher expression of CXCR4 and CXCR7, which was colocalized in the cancer cell epithelium. The CXCR/CXCR4 heterodimerization was associated with increased histone demethylase JMJD2A. Villin-CXCR7-CXCR4 transgenic mice demonstrated a greater degree of exacerbated colitis and tumorigenesis than villin-CXCR7 and villin-CXCR4 mice. The CXCR7/CXCR4 heterodimerization also promoted APC mutation-driven colorectal tumorigenesis in APCMin/+/villin-CXCR7-CXCR4 mice. Further analysis showed that the CXCR7/CXCR4 heterodimer induced nuclear βarr1 recruitment and histone demethylase JMJD2A, leading to histone demethylation and resulting in transcription of inflammatory factors and oncogenes. This study uncovered a novel mechanism of colorectal tumorigenesis through the CXCR7/CXCR4 heterodimer-induced histone demethylation. Inhibition of CXCR7/CXCR4 heterodimer-induced histone demethylation could be an effective strategy for the prevention and treatment of colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 10 June 2019

    A correction to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  Google Scholar 

  2. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.

    Article  Google Scholar 

  3. Atreya I, Neurath MF. Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther. 2008;8:561–72.

    Article  CAS  Google Scholar 

  4. Yang D, Dai T, Xue L, Liu X, Wu B, Geng J, et al. Expression of chemokine receptor CXCR7 in colorectal carcinoma and its prognostic significance. Int J Clin Exp Pathol. 2015;8:13051–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Werner L, Elad H, Brazowski E, Tulchinsky H, Vigodman S, Kopylov U, et al. Reciprocal regulation of CXCR4 and CXCR7 in intestinal mucosal homeostasis and inflammatory bowel disease. J Leukoc Biol. 2011;90:583–90.

    Article  CAS  Google Scholar 

  6. Werner L, Guzner-Gur H, Dotan I. Involvement of CXCR4/CXCR7/CXCL12 Interactions in Inflammatory bowel disease. Theranostics. 2013;3:40–46.

    Article  CAS  Google Scholar 

  7. Luker KE, Steele JM, Mihalko LA, Ray P, Luker GD. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene. 2010;29:4599–610.

    Article  CAS  Google Scholar 

  8. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–66.

    Article  CAS  Google Scholar 

  9. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203:2201–13.

    Article  CAS  Google Scholar 

  10. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009;113:6085–93.

    Article  CAS  Google Scholar 

  11. Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem. 2011;286:32188–97.

    Article  CAS  Google Scholar 

  12. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C. CXCR7 impact on CXCL12 biology and disease. Trends Mol Med. 2013;19:12–22.

    Article  CAS  Google Scholar 

  13. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  Google Scholar 

  14. Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 2013;73:2936–42.

    Article  CAS  Google Scholar 

  15. Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 2012;33:17–27.

    Article  CAS  Google Scholar 

  16. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. CXCR2 Inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29:832–45.

    Article  CAS  Google Scholar 

  17. Liu XQ, Fourel L, Dalonneau F, Sadir R, Leal S, Lortat-Jacob H, et al. Biomaterial-enabled delivery of SDF-1alpha at the ventral side of breast cancer cells reveals a crosstalk between cell receptors to promote the invasive phenotype. Biomaterials. 2017;127:61–74.

    Article  CAS  Google Scholar 

  18. Zhou ZH, Rao J, Yang J, Wu F, Tan J, Xu SL, et al. SEMA3F prevents metastasis of colorectal cancer by PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. J Pathol. 2015;236:467–78.

    Article  CAS  Google Scholar 

  19. Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, et al. CD133( + )CXCR4( + ) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 2012;10:85.

    Article  Google Scholar 

  20. Graham GJ. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes. Eur J Immunol. 2009;39:342–51.

    Article  CAS  Google Scholar 

  21. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    Article  CAS  Google Scholar 

  22. Haile L, von Wasielewski AR, Gamrekelashvili J, Krüger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135:871–81.

    Article  CAS  Google Scholar 

  23. Wu T, Dai Y, Wang W, Teng G, Jiao H, Shuai X, et al. Macrophage targeting contributes to the inhibitory effects of embelin on colitis-associated cancer. Oncotarget. 2016;7:19548–58.

    PubMed  PubMed Central  Google Scholar 

  24. Gabrilovich DI, Nagara JS. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  Google Scholar 

  25. Beaulieu JM, Caron MG. Beta-arrestin goes nuclear. Cell. 2005;123:755–7.

    Article  CAS  Google Scholar 

  26. Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123:833–47.

    Article  CAS  Google Scholar 

  27. Lefkowitz RJ, Rajagopal K, Whalen EJ. New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell. 2006;24:643–52.

    Article  CAS  Google Scholar 

  28. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006;125:467–81.

    Article  CAS  Google Scholar 

  29. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 2006;442:312–6.

    Article  CAS  Google Scholar 

  30. Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13:297–311.

    Article  CAS  Google Scholar 

  31. Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet. 2015;208:215–24.

    Article  CAS  Google Scholar 

  32. Salifou K, Ray S, Verrier L, Aguirrebengoa M, Trouche D, Panov KI, et al. The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat Commun. 2016;7:10174.

    Article  CAS  Google Scholar 

  33. Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun. 2007;359:742–6.

    Article  CAS  Google Scholar 

  34. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  CAS  Google Scholar 

  35. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285:26114–20.

    Article  CAS  Google Scholar 

  36. Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng B. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production. J Biol Chem. 2015;290:5414–23.

    Article  CAS  Google Scholar 

  37. Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond). 2014;11:23.

    Article  Google Scholar 

  38. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.

    CAS  PubMed  Google Scholar 

  39. Saleiro D, Murillo G, Benya RV, Bissonnette M, Hart J, Mehta RG. Estrogen receptor-β protects against colitis-associated neoplasia in mice. Int J Cancer. 2012;131:2553–61.

    Article  CAS  Google Scholar 

  40. Sun C, Zargham R, Shao Q, Gui X, Marcus V, Lazaris A, et al. Association of CD98, integrin β1, integrin β3 and Fak with the progression and liver metastases of colorectal cancer. Pathol Res Pract. 2014;210:668–74.

    Article  CAS  Google Scholar 

  41. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 2013;24:631–44.

    Article  CAS  Google Scholar 

  42. Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, et al. SHP-2-upregulated ZEB1 is important for PDGFR alpha-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 2016;35:5641–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (81673449 and 91629303) and Beijing Natural Science Foundation Program and Scientific Research Program of Municipal Commission of Education (KZ201710025020 and KZ201810025033).

Author contributions

X-JQ conceived and designed the study. Z-YS and FW performed experiments. Z-YS wrote the manuscript. S-XC performed statistical analysis. Z-HG provided intellectual inputs and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zu-Hua Gao or Xian-Jun Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, ZY., Wang, F., Cui, SX. et al. CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Oncogene 38, 1560–1575 (2019). https://doi.org/10.1038/s41388-018-0519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0519-2

This article is cited by

Search

Quick links