Article | Published:

CD163, a novel therapeutic target, regulates the proliferation and stemness of glioma cells via casein kinase 2

Oncogenevolume 38pages11831199 (2019) | Download Citation


Glioma is a devastating cancer with a dismal prognosis and there is an urgent need to discover novel glioma-specific antigens for glioma therapy. Previous studies have identified CD163-positive tumour cells in certain solid tumours, but CD163 expression in glioma remains unknown. In this study, via an analysis of public datasets, we demonstrated that CD163 overexpression in glioma specimens correlated with an unfavourable patient prognosis. CD163 expression was increased in glioma cells, especially primary glioma cells. The loss of CD163 expression inhibited both cell cycle progression and the proliferation of glioblastoma multiforme (GBM) cell lines and primary glioma cells. CD163 interacted directly with casein kinase 2 (CK2) and CD163 silencing reduced AKT/GSK3β/β-catenin/cyclin D1 pathway activity via CK2. Moreover, CD163 was upregulated in CD133-positive glioma stem cells (GSCs), and CD163 downregulation decreased the expression of GSC markers, including CD133, ALDH1A1, NANOG and OCT4. The knockdown of CD163 impaired GSC stemness by inhibiting the CK2/AKT/GSK3β/β-catenin pathway. Finally, a CD163 antibody successfully induced complement-dependent cytotoxicity against glioma cells. Our findings indicate that CD163 contributes to gliomagenesis via CK2 and provides preclinical evidence that CD163 and the CD163 pathway might serve as a therapeutic target for glioma.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

These authors contributed equally: Taoliang Chen, Jiansheng Chen


  1. 1.

    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19:v1–v88.

  2. 2.

    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

  3. 3.

    Boussiotis VA, Charest A. Immunotherapies for malignant glioma. Oncogene. 2018;37:1121–41.

  4. 4.

    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.

  5. 5.

    Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res. 2016;4:124–35.

  6. 6.

    Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol. 2017;19:iii21–iii21.

  7. 7.

    Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21:687–92.

  8. 8.

    Law SK, Micklem KJ, Shaw JM, Zhang XP, Dong Y, Willis AC, et al. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur J Immunol. 1993;23:2320–5.

  9. 9.

    Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409:198–201.

  10. 10.

    Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113:887–92.

  11. 11.

    Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol. 2007;81:7371–9.

  12. 12.

    Sanchez-Torres C, Gomez-Puertas P, Gomez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol. 2003;148:2307–23.

  13. 13.

    Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 2015;36:229–39.

  14. 14.

    Qi L, Yu H, Zhang Y, Zhao D, Lv P, Zhong Y, et al. IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget. 2016;7:71673–85.

  15. 15.

    Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol. 2012;189:444–53.

  16. 16.

    Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 2016;76:5671–82.

  17. 17.

    Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080.

  18. 18.

    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

  19. 19.

    Lisi L, Ciotti GM, Braun D, Kalinin S, Curro D, Dello RC, et al. Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett. 2017;645:106–12.

  20. 20.

    Prosniak M, Harshyne LA, Andrews DW, Kenyon LC, Bedelbaeva K, Apanasovich TV, et al. Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res. 2013;19:3776–86.

  21. 21.

    Ma C, Horlad H, Ohnishi K, Nakagawa T, Yamada S, Kitada S. CD163-positive cancer cells are potentially associated with high malignant potential in clear cell renal cell carcinoma. Med Mol Morphol. 2017;51:13–20.

  22. 22.

    Jensen TO, Schmidt H, Steiniche T, Hoyer M, Moller HJ, Jensen TO, et al. Melanoma cell expression of macrophage markers in AJCC stage I/II melanoma. J Clin Oncol. 2010;28:e19034–e19034.

  23. 23.

    Shabo I, Olsson H, Sun XF, Svanvik J. Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer. 2009;125:1826–31.

  24. 24.

    Shabo I, Stal O, Olsson H, Dore S, Svanvik J. Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer. 2008;123:780–6.

  25. 25.

    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

  26. 26.

    Shtutman M, Zhurinsky J, Simcha I, Albanese C, Amico MD, Pestell R, et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1998;96:5522–7.

  27. 27.

    Lai SS, Zhao DD, Cao P, Lu K, Luo OY, Chen WB, et al. PP2Acalpha positively regulates the termination of liver regeneration in mice through the AKT/GSK3beta/Cyclin D1 pathway. J Hepatol. 2016;64:352–60.

  28. 28.

    Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003;369:1–15.

  29. 29.

    Ritter M, Buechler C, Kapinsky M, Schmitz G. Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C. Eur J Immunol. 2001;31:999–1009.

  30. 30.

    Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12:668–77.

  31. 31.

    Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, et al. Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of beta-catenin transcriptional activity. J Cell Physiol. 2011;226:1953–9.

  32. 32.

    Kaminska B, Ellert-Miklaszewska A, Oberbek A, Wisniewski P, Kaza B, Makowska M, et al. Efficacy and mechanism of anti-tumor action of new potential CK2 inhibitors toward glioblastoma cells. Int J Oncol. 2009;35:1091–100.

  33. 33.

    Xi G, Hayes E, Lewis R, Ichi S, Mania-Farnell B, Shim K, et al. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-kappaB pathway in multidrug-resistant glioblastoma cells in vitro. Oncogene. 2016;35:241–50.

  34. 34.

    Rasper M, Schafer A, Piontek G, Teufel J, Brockhoff G, Ringel F, et al. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 2010;12:1024–33.

  35. 35.

    Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz IAA. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010;29:2659–74.

  36. 36.

    Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286:41434–41.

  37. 37.

    Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD, et al. β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene. 2015;34:2297–308.

  38. 38.

    Tang Y, Berlind J, Mavila N. Inhibition of CREB binding protein-beta-catenin signaling down regulates CD133 expression and activates PP2A-PTEN signaling in tumor initiating liver cancer cells. Cell Commun Signal. 2018;16:9.

  39. 39.

    Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 2008;22:746–55.

  40. 40.

    Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des Devel Ther. 2009;3:7–16.

  41. 41.

    Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35.

  42. 42.

    Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol. 2006;168:822–34.

  43. 43.

    Zhang Z, Zhang ZY, Wu Y, Schluesener HJ. Lesional accumulation of CD163+macrophages/microglia in rat traumatic brain injury. Brain Res. 2012;1461:102–10.

  44. 44.

    Noubissi FK, Ogle BM. Cancer cell fusion: mechanisms slowly unravel. Int J Mol Sci. 2016;17:1587–1596.

  45. 45.

    Shabo I, Svanvik J. Expression of macrophage antigens by tumor cells. Adv Exp Med Biol. 2011;714:141–50.

  46. 46.

    Lu X, Kang Y. Cell fusion hypothesis of the cancer stem cell. Adv Exp Med Biol. 2011;714:129–40.

  47. 47.

    Bigner SH, Bjerkvig R, Laerum OD. DNA content and chromosomal composition of malignant human gliomas. Neurol Clin. 1985;3:769–84.

  48. 48.

    He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.

  49. 49.

    Olsen BB, Issinger OG, Guerra B. Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene. 2010;29:6016–26.

  50. 50.

    Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E. Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis. 2012;3:e271.

  51. 51.

    Nitta RT, Gholamin S, Feroze AH, Agarwal M, Cheshier SH, Mitra SS, et al. Casein kinase 2alpha regulates glioblastoma brain tumor-initiating cell growth through the beta-catenin pathway. Oncogene. 2015;34:3688–99.

  52. 52.

    Lin KY, Fang CL, Chen Y, Li CF, Chen SH, Kuo CY, et al. Overexpression of nuclear protein kinase CK2 Beta subunit and prognosis in human gastric carcinoma. Ann Surg Oncol. 2010;17:1695–702.

  53. 53.

    Pallares J, Llobet D, Santacana M, Eritja N, Velasco A, Cuevas D, et al. CK2beta is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation. Am J Pathol. 2009;174:287–96.

  54. 54.

    Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70:719–29.

  55. 55.

    Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene. 2011;30:3454–67.

  56. 56.

    Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci. 2017;18:979–1005.

  57. 57.

    Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31:326–41.

Download references


This work was supported by the Natural Science Foundation of China (nos. 81772651 and 81772652).

Author information

Author notes


    1. The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, China

      • Taoliang Chen
      • , Jiansheng Chen
      • , Yubo Zhu
      • , Yan Li
      • , Yun Wang
      • , Huajian Chen
      • , Jihui Wang
      • , Xiao Li
      • , Yang Liu
      • , Baisheng Li
      • , Xinlin Sun
      •  & Yiquan Ke
    2. Department of Neurosurgery, The First Hospital of Xinjiang Medical University, 830054, Urumqi, China

      • Yun Wang
    3. Department of Neurosurgery, Huizhou Central People’s Hospital, 516001, Huizhou, China

      • Baisheng Li


    1. Search for Taoliang Chen in:

    2. Search for Jiansheng Chen in:

    3. Search for Yubo Zhu in:

    4. Search for Yan Li in:

    5. Search for Yun Wang in:

    6. Search for Huajian Chen in:

    7. Search for Jihui Wang in:

    8. Search for Xiao Li in:

    9. Search for Yang Liu in:

    10. Search for Baisheng Li in:

    11. Search for Xinlin Sun in:

    12. Search for Yiquan Ke in:

    Conflict of interest

    The authors declare that they have no conflict of interest.

    Corresponding authors

    Correspondence to Xinlin Sun or Yiquan Ke.

    Electronic supplementary material

    About this article

    Publication history





    Issue Date