Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma

Abstract

Certain cancers, including gastrointestinal stromal tumor (GIST) and subsets of melanoma, are caused by somatic KIT mutations that result in KIT receptor tyrosine kinase constitutive activity, which drives proliferation. The treatment of KIT-mutant GIST has been revolutionized with the advent of KIT-directed cancer therapies. KIT tyrosine kinase inhibitors (TKI) are superior to conventional chemotherapy in their ability to control advanced KIT-mutant disease. However, these therapies have a limited duration of activity due to drug-resistant secondary KIT mutations that arise (or that are selected for) during KIT TKI treatment. To overcome the problem of KIT TKI resistance, we sought to identify novel therapeutic targets in KIT-mutant GIST and melanoma cells using a human tyrosine kinome siRNA screen. From this screen, we identified lemur tyrosine kinase 3 (LMTK3) and herein describe its role as a novel KIT regulator in KIT-mutant GIST and melanoma cells. We find that LMTK3 regulated the translation rate of KIT, such that loss of LMTK3 reduced total KIT, and thus KIT downstream signaling in cancer cells. Silencing of LMTK3 decreased cell viability and increased cell death in KIT-dependent, but not KIT-independent GIST and melanoma cell lines. Notably, LMTK3 silencing reduced viability of all KIT-mutant cell lines tested, even those with drug-resistant KIT secondary mutations. Furthermore, targeting of LMTK3 with siRNA delayed KIT-dependent GIST growth in a xenograft model. Our data suggest the potential of LMTK3 as a target for treatment of patients with KIT-mutant cancer, particularly after failure of KIT TKIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Witte ON. Steel locus defines new multipotent growth factor. Cell. 1990;63:5–6.

    Article  CAS  PubMed  Google Scholar 

  2. Lev S, Givol D, Yarden Y. A specific combination of substrates is involved in signal transduction by the kit-encoded receptor. EMBO J. 1991;10:647–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lev S, Yarden Y, Givol D. Dimerization and activation of the kit receptor by monovalent and bivalent binding of the stem cell factor. J Biol Chem. 1992;267:15970–7.

    CAS  PubMed  Google Scholar 

  4. Kajimoto N, Nakai N, Ohkouchi M, Hashikura Y, Liu-Kimura NN, Isozaki K, et al. Characterization of various types of mast cells derived from model mice of familial gastrointestinal stromal tumors with KIT-Asp818Tyr mutation. Int J Clin Exp Pathol. 2015;8:11970–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakai N, Ishikawa T, Nishitani A, Liu NN, Shincho M, Hao H, et al. A mouse model of a human multiple GIST family with KIT-Asp820Tyr mutation generated by a knock-in strategy. J Pathol. 2008;214:302–11.

    Article  CAS  PubMed  Google Scholar 

  6. Rubin BP, Antonescu CR, Scott-Browne JP, Comstock ML, Gu Y, Tanas MR, et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res. 2005;65:6631–9.

    Article  CAS  PubMed  Google Scholar 

  7. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14:6821–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D, et al. KIT mutations are common in testicular seminomas. Am J Pathol. 2004;164:305–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Larizza L, Magnani I, Beghini A. The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leuk & Lymphoma. 2005;46:247–55.

    Article  CAS  Google Scholar 

  10. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA. 1995;92:10560–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tian Q, Frierson HF Jr., Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol. 1999;154:1643–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78.

    Article  CAS  PubMed  Google Scholar 

  13. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31:3182–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol. 2002;33:466–77.

    Article  CAS  PubMed  Google Scholar 

  15. Spencer KR, Mehnert JM. Mucosal Melanoma: Epidemiology, Biology and Treatment. Cancer Treat Res. 2016;167:295–320.

    Article  PubMed  Google Scholar 

  16. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–5.

    Article  CAS  PubMed  Google Scholar 

  17. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32.

    Article  CAS  PubMed  Google Scholar 

  18. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.

    Article  CAS  PubMed  Google Scholar 

  19. Edmonson JH, Marks RS, Buckner JC, Mahoney MR. Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Invest. 2002;20:605–12.

    Article  CAS  PubMed  Google Scholar 

  20. Carvajal RD, Lawrence DP, Weber JS, Gajewski TF, Gonzalez R, Lutzky J, et al. Phase II study of nilotinib in melanoma harboring KIT alterations following progression to prior KIT inhibition. Clin Cancer Res. 2015;21:2289–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26:2046–51.

    Article  CAS  PubMed  Google Scholar 

  23. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  CAS  PubMed  Google Scholar 

  24. Bannon AE, Klug LR, Corless CL, Heinrich MC. Using molecular diagnostic testing to personalize the treatment of patients with gastrointestinal stromal tumors. Expert Rev Mol Diagn. 2017;17:445–57.

    Article  CAS  PubMed  Google Scholar 

  25. Gramza AW, Corless CL, Heinrich MC. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 2009;15:7510–8.

    Article  CAS  PubMed  Google Scholar 

  26. Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11:4182–90.

    Article  CAS  PubMed  Google Scholar 

  27. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Roberts KG, Odell AF, Byrnes EM, Baleato RM, Griffith R, Lyons AB, et al. Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Mol Cancer Ther. 2007;6:1159–66.

    Article  CAS  PubMed  Google Scholar 

  29. Weisberg E, Griffin JD. Resistance to imatinib (Glivec): update on clinical mechanisms. Drug Resist Update: Rev Comment Antimicrob Anticancer Chemother. 2003;6:231–8.

    Article  CAS  Google Scholar 

  30. Tyner JW, Walters DK, Willis SG, Luttropp M, Oost J, Loriaux M, et al. RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood. 2008;111:2238–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tyner JW, Deininger MW, Loriaux MM, Chang BH, Gotlib JR, Willis SG, et al. RNAi screen for rapid therapeutic target identification in leukemia patients. Proc Natl Acad Sci USA. 2009;106:8695–8700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tomomura M, Morita N, Yoshikawa F, Konishi A, Akiyama H, Furuichi T, et al. Structural and functional analysis of the apoptosis-associated tyrosine kinase (AATYK) family. Neuroscience. 2007;148:510–21.

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Brautigan DL. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem. 2002;277:49605–12.

    Article  CAS  PubMed  Google Scholar 

  34. Giamas G, Filipovic A, Jacob J, Messier W, Zhang H, Yang D, et al. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer. Nat Med. 2011;17:715–9.

    Article  CAS  PubMed  Google Scholar 

  35. Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y, et al. LMTK3 is implicated in endocrine resistance via multiple signaling pathways. Oncogene. 2013;32:3371–80.

    Article  CAS  PubMed  Google Scholar 

  36. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al. The kinase LMTK3 promotes invasion in breast cancer through GRB2-mediated induction of integrin beta(1). Sci Signal. 2014;7:ra58.

    Article  PubMed  Google Scholar 

  37. Xu Y, Zhang H, Nguyen VT, Angelopoulos N, Nunes J, Reid A, et al. LMTK3 represses tumor suppressor-like genes through chromatin remodeling in breast cancer. Cell Rep. 2015;12:837–49.

    Article  CAS  PubMed  Google Scholar 

  38. Javidi-Sharifi N, Traer E, Martinez J, Gupta A, Taguchi T, Dunlap J, et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 2015;75:880–91.

    Article  CAS  PubMed  Google Scholar 

  39. Taguchi T, Sonobe H, Toyonaga S, Yamasaki I, Shuin T, Takano A, et al. Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest. 2002;82:663–5.

    Article  PubMed  Google Scholar 

  40. Agarwal A, Tyner JW. RNAi screening of leukemia cells using electroporation. Methods Mol Biol. 2016;1470:85–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rossi F, Yozgat Y, de Stanchina E, Veach D, Clarkson B, Manova K, et al. Imatinib upregulates compensatory integrin signaling in a mouse model of gastrointestinal stromal tumor and is more effective when combined with dasatinib. Mol Cancer Res. 2010;8:1271–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sakurama K, Noma K, Takaoka M, Tomono Y, Watanabe N, Hatakeyama S, et al. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol Cancer Ther. 2009;8:127–34.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi T, Serada S, Ako M, Fujimoto M, Miyazaki Y, Nakatsuka R, et al. New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis. Int J Cancer. 2013;133:2737–43.

    CAS  PubMed  Google Scholar 

  44. Jacob J, Favicchio R, Karimian N, Mehrabi M, Harding V, Castellano L, et al. LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5. Cancer Lett. 2016;372:137–46.

    Article  CAS  PubMed  Google Scholar 

  45. An N, Cen B, Cai H, Song JH, Kraft A, Kang Y. Pim1 kinase regulates c-Kit gene translation. Exp Hematol Oncol. 2016;5:31.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Grzmil M, Hemmings BA. Translation regulation as a therapeutic target in cancer. Cancer Res. 2012;72:3891–3900.

    Article  CAS  PubMed  Google Scholar 

  47. Garner AP, Gozgit JM, Anjum R, Vodala S, Schrock A, Zhou T, et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res. 2014;20:5745–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gagnon KB, England R, Diehl L, Delpire E. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol. 2007;292:C1809–1815.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to Dr. Sebastian Bauer (West German Cancer Center, Essen, Germany) for generously providing KIT-mutant GIST cell lines. Thank you to Dr. Dirk Schadendorf (West German Cancer Center, Essen, Germany) for generously providing the MaMel (144aI) cell line. Deepest thanks to Arin McKinley, Diana Griffith, and Ashley Young for their technical and administrative support during the course of this study.

Financial support

L.R. Klug, A. Town, A.E. Bannon, and M.C. Heinrich were supported by VA Merit Review Grants 1I01BX000338-01 and 2I01BX000338-05. M.C. Heinrich was also supported by the GIST Cancer Research Fund and the Life Raft Group. L.R. Klug, W.H. Fleming, J.W. Tyner, and M.C. Heinrich were supported by the V Foundation for Cancer Research. J.W. Tyner was supported by the Leukemia & Lymphoma Society, Gabrielle’s Angel Foundation for Cancer Research, and the National Cancer Institute (5R00CA151457-04; 1R01CA183947-01). N. Javidi-Sharifi was supported by the Oregon Clinical and Translational Research Institute (OCTRI), grant number TL1 RR024159 from the National Center for Advancing Translational Sciences (NCATS), a component of the NIH, and NIH Roadmap for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lillian R. Klug.

Ethics declarations

Conflict of interest

MCH is a consultant for Novartis, Deciphera Pharmaceuticals, Blueprint Medicines, Ariad Pharmaceuticals, Bayer Pharmaceuticals, and Molecular MD. MCH has provided expert testimony and has a patent licensed to Novartis. MCH receives research support from Ariad, Deciphera, Blueprint Medicines and has equity interest in Molecular MD. JWT receives research support from Agios Pharmaceuticals, Array Biopharma, Aptose Biosciences, AstraZeneca, Constellation Pharmaceuticals, Genentech, Gilead, Incyte Corporation, Janssen Pharmaceutica, Seattle Genetics, Syros, Takeda Pharmaceutical Company and is a consultant for Leap Oncology.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klug, L.R., Bannon, A.E., Javidi-Sharifi, N. et al. LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene 38, 1200–1210 (2019). https://doi.org/10.1038/s41388-018-0508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0508-5

This article is cited by

Search

Quick links