Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Klotho suppresses colorectal cancer through modulation of the unfolded protein response

Abstract

Klotho is an anti-aging transmembrane protein, which can be shed and function as a hormone. Accumulating data indicate klotho as a tumor suppressor in a wide array of malignancies and indicate the subdomain KL1 as the active region of the protein. We aimed to study the role of klotho as a tumor suppressor in colorectal cancer. Bioinformatics analyses of TCGA datasets indicated reduced klotho mRNA levels in human colorectal cancer, along with negative regulation of klotho expression by hypermethylation of the promoter and 1st exon, and hypomethylation of an area within the gene. Overexpression or treatment with klotho or KL1 inhibited proliferation of colorectal cancer cells in vitro. The in vivo activity of klotho and KL1 was examined using two models recapitulating development of tumors in the normal colonic environment of immune-competent mice. Treatment with klotho inhibited formation of colon polyps induced by the carcinogen azoxymethane, and KL1 treatment slowed growth of orthotopically-implanted colorectal tumors. Gene expression array revealed that klotho and KL1 expression enhanced the unfolded protein response (UPR) and this was further established by increased levels of spliced XBP1, GRP78 and phosphorylated-eIF2α. Furthermore, attenuation of the UPR partially abrogated klotho tumor suppressor activity. In conclusion, this study indicates klotho as a tumor suppressor in colorectal cancer and identifies, for the first time, the UPR as a pathway mediating klotho activities in cancer. These data suggest that administration of exogenous klotho or KL1 may serve as a novel strategy for prevention and treatment of colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Snaebjornsson P, Jonasson L, Olafsdottir EJ, van Grieken NCT, Moller PH, Theodors A, et al. Why is colon cancer survival improving by time? A nationwide survival analysis spanning 35 years. Int J Cancer. 2017;141:531–9.

    Article  CAS  Google Scholar 

  2. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  Google Scholar 

  3. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998;424:6–10.

    Article  CAS  Google Scholar 

  4. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27:7094–105.

    Article  CAS  Google Scholar 

  5. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242:626–30.

    Article  CAS  Google Scholar 

  6. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Sci (New Y, NY). 2005;309:1829–33.

    Article  CAS  Google Scholar 

  7. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.

    Article  CAS  Google Scholar 

  8. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Sci (New Y, NY). 2005;310:490–3.

    Article  CAS  Google Scholar 

  9. Lojkin I, Rubinek T, Orsulic S, Schwarzmann O, Karlan BY, Bose S, et al. Reduced expression and growth inhibitory activity of the aging suppressor klotho in epithelial ovarian cancer. Cancer Lett. 2015;362:149–57.

    Article  CAS  Google Scholar 

  10. Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, et al. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:4254–66.

    Article  CAS  Google Scholar 

  11. Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A, et al. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012;133:649–57.

    Article  CAS  Google Scholar 

  12. Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, et al. Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene. 2010;29:26–33.

    Article  CAS  Google Scholar 

  13. Rubinek T, Wolf I. The role of alpha-klotho as a universal tumor suppressor. Vitam Horm. 2016;101:197–214.

    Article  CAS  Google Scholar 

  14. Ligumsky H, Rubinek T, Merenbakh-Lamin K, Yeheskel A, Sertchook R, Shahmoon S, et al. Tumor suppressor activity of klotho in breast cancer is revealed by structure-function analysis. Mol Cancer Res: MCR. 2015;13:1398–407.

    Article  CAS  Google Scholar 

  15. Camilli TC, Xu M, O’Connell MP, Chien B, Frank BP, Subaran S, et al. Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 2011;24:175–86.

    Article  CAS  Google Scholar 

  16. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286:8655–65.

    Article  CAS  Google Scholar 

  17. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010;9:109.

    Article  Google Scholar 

  18. Wang L, Wang X, Wang X, Jie P, Lu H, Zhang S, et al. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011;1:111–9.

    CAS  PubMed  Google Scholar 

  19. Xie B, Chen J, Liu B, Zhan J. Klotho acts as a tumor suppressor in cancers. Pathol Oncol Res: POR. 2013;19:611–7.

    Article  CAS  Google Scholar 

  20. Li XX, Huang LY, Peng JJ, Liang L, Shi DB, Zheng HT, et al. Klotho suppresses growth and invasion of colon cancer cells through inhibition of IGF1R-mediated PI3K/AKT pathway. Int J Oncol. 2014;45:611–8.

    Article  Google Scholar 

  21. Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X, et al. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2011;32:729–35.

    Article  CAS  Google Scholar 

  22. Yang W, Wang X, Li X, Wang M, Chen X, Wu X, et al. The specific methylation characteristics of cancer related genes in Chinese colorectal cancer patients. Tumour Biol: J Int Soc Oncodev Biol Med. 2014;35:8267–79.

    Article  CAS  Google Scholar 

  23. Maas NL, Diehl JA. Molecular pathways: the PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21:675–9.

    Article  CAS  Google Scholar 

  24. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14:581–97.

    Article  CAS  Google Scholar 

  25. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81.

    Article  CAS  Google Scholar 

  26. Zigmond E, Halpern Z, Elinav E, Brazowski E, Jung S, Varol C. Utilization of murine colonoscopy for orthotopic implantation of colorectal cancer. PLoS ONE. 2011;6:e28858.

    Article  Google Scholar 

  27. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  Google Scholar 

  28. Chen B, Ma X, Liu S, Zhao W, Wu J. Inhibition of lung cancer cells growth, motility and induction of apoptosis by Klotho, a novel secreted Wnt antagonist, in a dose-dependent manner. Cancer Biol Ther. 2012;13:1221–8.

    Article  CAS  Google Scholar 

  29. Sun H, Gao Y, Lu K, Zhao G, Li X, Li Z, et al. Overexpression of Klotho suppresses liver cancer progression and induces cell apoptosis by negatively regulating wnt/beta-catenin signaling pathway. World J Surg Oncol. 2015;13:307.

    Article  Google Scholar 

  30. Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun. 2011;409:610–5.

    Article  CAS  Google Scholar 

  31. Peleg S, Sellin JH, Wang Y, Freeman MR, Umar S. Suppression of aberrant transient receptor potential cation channel, subfamily V, member 6 expression in hyperproliferative colonic crypts by dietary calcium. Am J Physiol Gastrointest Liver Physiol. 2010;299:G593–601.

    Article  CAS  Google Scholar 

  32. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90.

    Article  CAS  Google Scholar 

  33. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp-Vogelaar I, van Ballegooijen M, Hankey BF, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med. 2012;366:687–96.

    Article  CAS  Google Scholar 

  34. Landgraf M, McGovern JA, Friedl P, Hutmacher DW. Rational design of mouse models for cancer research. Trends Biotechnol. 2018;36:242–51.

    Article  CAS  Google Scholar 

  35. Tang X, Fan Z, Wang Y, Ji G, Wang M, Lin J, et al. Expression of klotho and beta-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance. Dis Esophagus: Off J Int Soc Dis Esophagus. 2016;29:207–14.

    Article  CAS  Google Scholar 

  36. Banerjee S, Zhao Y, Sarkar PS, Rosenblatt KP, Tilton RG, Choudhary S. Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2013;31:659–72.

    Article  CAS  Google Scholar 

  37. Song S, Gao P, Xiao H, Xu Y, Si LY. Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS ONE. 2013;8:e82968.

    Article  Google Scholar 

  38. Liu QF, Ye JM, Deng ZY, Yu LX, Sun Q, Li SS. Ameliorating effect of Klotho on endoplasmic reticulum stress and renal fibrosis induced by unilateral ureteral obstruction. Iran J Kidney Dis. 2015;9:291–7.

    PubMed  Google Scholar 

  39. Xing X, Lai M, Wang Y, Xu E, Huang Q. Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta. 2006;364:308–15.

    Article  CAS  Google Scholar 

  40. Piton N, Wason J, Colasse E, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch: Int J Pathol. 2016;469:145–54.

    Article  CAS  Google Scholar 

  41. Thornton M, Aslam MA, Tweedle EM, Ang C, Campbell F, Jackson R, et al. The unfolded protein response regulator GRP78 is a novel predictive biomarker in colorectal cancer. Int J Cancer. 2013;133:1408–18.

    Article  CAS  Google Scholar 

  42. Hanaoka M, Ishikawa T, Ishiguro M, Tokura M, Yamauchi S, Kikuchi A. et al. Expression of ATF6 as a marker of pre-cancerous atypical change in ulcerative colitis-associated colorectal cancer: a potential role in the management of dysplasia. J Gastroenterol. 2017;53:631–41.

    Article  Google Scholar 

  43. Li XX, Zhang HS, Xu YM, Zhang RJ, Chen Y, Fan L, et al. Knockdown of IRE1alpha inhibits colonic tumorigenesis through decreasing beta-catenin and IRE1alpha targeting suppresses colon cancer cells. Oncogene. 2017;36:6738–46.

    Article  CAS  Google Scholar 

  44. Skalka N, Caspi M, Caspi E, Loh YP, Rosin-Arbesfeld R. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene. 2013;32:2836–47.

    Article  CAS  Google Scholar 

  45. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Sci (New Y, NY). 1997;275:1787–90.

    Article  CAS  Google Scholar 

  46. Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT, et al. Review of processing and analysis methods for DNA methylation array data. Br J Cancer. 2013;109:1394–402.

    Article  CAS  Google Scholar 

  47. Longo PA, Kavran JM, Kim MS, Leahy DJ. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013;529:227–40.

    Article  CAS  Google Scholar 

  48. Guda K, Natale L, Markowitz SD. An improved method for staining cell colonies in clonogenic assays. Cytotechnology. 2007;54:85–8.

    Article  CAS  Google Scholar 

  49. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  Google Scholar 

  50. Zismanov V, Lishner M, Tartakover-Matalon S, Radnay J, Shapiro H, Drucker L. Tetraspanin-induced death of myeloma cell lines is autophagic and involves increased UPR signalling. Br J Cancer. 2009;101:1402–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Tirosh (The Institute of Endocrinology, Sheba Medical Center, Israel) for the generous gift of anti-GRP78, anti-phosphorylated, and -total-eIF2α antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Wolf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbel Rubinstein, T., Shahmoon, S., Zigmond, E. et al. Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene 38, 794–807 (2019). https://doi.org/10.1038/s41388-018-0489-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0489-4

This article is cited by

Search

Quick links