Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells


Chemokine signaling regulates cell migration and tumor metastasis. CXCL12, a member of the chemokine family, and its receptor, CXCR4, a G protein coupled receptor (GPCR), are key mediators of prostate-cancer (PC) bone metastasis. In PC cells androgens activate CXCR4 gene expression and receptor signaling on lipid rafts, which induces protease expression and cancer cell invasion. To identify novel lipid-raft-associated CXCR4 regulators supporting invasion/metastasis, we performed a SILAC-based quantitative proteomic analysis of lipid-rafts derived from PC3 stable cell lines with overexpression or knockdown of CXCR4. This analysis identified the evolutionarily conserved phosphatidylinositol 4-kinase IIIα (PI4KIIIα), and SAC1 phosphatase that dephosphorylates phosphatidylinositol-4-phosphate as potential candidate CXCR4 regulators. CXCR4 interacted with PI4KIIIα membrane targeting machinery recruiting them to the plasma membrane for PI4P production. Consistent with this interaction, PI4KIIIα was found tightly linked to the CXCR4 induced PC cell invasion. Thus, ablation of PI4KIIIα in CXCR4-expressing PC3 cells reduced cellular invasion in response to a variety of chemokines. Immunofluorescence microscopy in CXCR4-expressing cells revealed localized production of PI4P on the invasive projections. Human tumor studies documented increased PI4KIIIα expression in metastatic tumors vs. the primary tumor counterparts, further supporting the PI4KIIIα role in tumor metastasis. Furthermore, we also identified an unexpected function of PI4KIIIα in GPCR signaling where CXCR4 regulates PI4KIIIα activity and mediate tumor metastasis. Altogether, our study identifies a novel cross-talk between PI4KIIIα and CXCR4 in promoting tumor metastasis and suggests that PI4KIIIα pharmacological targeting may have therapeutic benefit for advanced prostate cancer patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    CAS  Article  Google Scholar 

  2. 2.

    Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–50.

    CAS  Article  Google Scholar 

  3. 3.

    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    CAS  Article  Google Scholar 

  4. 4.

    Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S, Cher ML, et al. Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol. 2010;3:195–203.

    Article  Google Scholar 

  5. 5.

    Singareddy R, Semaan L, Conley-Lacomb MK, St John J, Powell K, Iyer M, et al. Transcriptional regulation of CXCR4 in prostate cancer: significance of TMPRSS2-ERG fusions. Mol Cancer Res. 2013;11:1349–61.

    CAS  Article  Google Scholar 

  6. 6.

    Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 2007;67:4244–53.

    CAS  Article  Google Scholar 

  7. 7.

    Castellone MD, Guarino V, De Falco V, Carlomagno F, Basolo F, Faviana P, et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene. 2004;23:5958–67.

    CAS  Article  Google Scholar 

  8. 8.

    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425:307–11.

    CAS  Article  Google Scholar 

  9. 9.

    Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK. Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res. 2005;65:2840–5.

    CAS  Article  Google Scholar 

  10. 10.

    Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 2003;198:1391–402.

    CAS  Article  Google Scholar 

  11. 11.

    Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem. 2005;280:22473–81.

    CAS  Article  Google Scholar 

  12. 12.

    Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278:21631–8.

    CAS  Article  Google Scholar 

  13. 13.

    Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005;65:9891–8.

    CAS  Article  Google Scholar 

  14. 14.

    Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62:7203–6.

    CAS  PubMed  Google Scholar 

  15. 15.

    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    CAS  Article  Google Scholar 

  16. 16.

    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121:1298–312.

    CAS  Article  Google Scholar 

  17. 17.

    Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006;66:32–48.

    CAS  Article  Google Scholar 

  18. 18.

    Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, et al. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer. 2016;15:68.

    Article  Google Scholar 

  19. 19.

    Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7.

    Article  Google Scholar 

  20. 20.

    Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer. 2010;10:342–52.

    CAS  Article  Google Scholar 

  21. 21.

    Balla A, Balla T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 2006;16:351–61.

    CAS  Article  Google Scholar 

  22. 22.

    Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem. 2014;289:6120–32.

    CAS  Article  Google Scholar 

  23. 23.

    Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, et al. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell. 2008;19:711–21.

    CAS  Article  Google Scholar 

  24. 24.

    Burke JE, Inglis AJ, Perisic O, Masson GR, McLaughlin SH, Rutaganira F, et al. Structures of PI4KIIIbeta complexes show simultaneous recruitment of Rab11 and its effectors. Science. 2014;344:1035–8.

    CAS  Article  Google Scholar 

  25. 25.

    Chung J, Nakatsu F, Baskin JM, De Camilli P. Plasticity of PI4KIIIalpha interactions at the plasma membrane. EMBO Rep. 2015;16:312–20.

    CAS  Article  Google Scholar 

  26. 26.

    Wu X, Chi RJ, Baskin JM, Lucast L, Burd CG, De Camilli P, et al. Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex. Dev Cell. 2014;28:19–29.

    CAS  Article  Google Scholar 

  27. 27.

    Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E, et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat Cell Biol. 2016;18:132–8.

    CAS  Article  Google Scholar 

  28. 28.

    Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, et al. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem. 2007;282:23878–91.

    CAS  Article  Google Scholar 

  29. 29.

    Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A. Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell. 2008;19:3334–46.

    CAS  Article  Google Scholar 

  30. 30.

    Chinni SR, Yamamoto H, Dong Z, Sabbota A, Bonfil RD, Cher ML. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol Cancer Res. 2008;6:446–57.

    CAS  Article  Google Scholar 

  31. 31.

    Dillenburg-Pilla P, Patel V, Mikelis CM, Zarate-Blades CR, Doci CL, Amornphimoltham P, et al. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Galphai/mTORC1 axis. FASEB J. 2015;29:1056–68.

    CAS  Article  Google Scholar 

  32. 32.

    Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP, Rappolee D, et al. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve-/- embryos but normality of PIKfyve+/- mice. J Biol Chem. 2011;286:13404–13.

    CAS  Article  Google Scholar 

  33. 33.

    Sbrissa D, Ikonomov OC, Shisheva A. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem. 1999;274:21589–97.

    CAS  Article  Google Scholar 

  34. 34.

    Baird D, Stefan C, Audhya A, Weys S, Emr SD. Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J Cell Biol. 2008;183:1061–74.

    CAS  Article  Google Scholar 

  35. 35.

    Nakatsu F, Baskin JM, Chung J, Tanner LB, Shui G, Lee SY, et al. PtdIns4P synthesis by PI4KIIIalpha at the plasma membrane and its impact on plasma membrane identity. J Cell Biol. 2012;199:1003–16.

    CAS  Article  Google Scholar 

  36. 36.

    Bojjireddy N, Guzman-Hernandez ML, Reinhard NR, Jovic M, Balla T. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors. J Cell Sci. 2015;128:118–28.

    CAS  Article  Google Scholar 

  37. 37.

    Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30–4.

    CAS  Article  Google Scholar 

  38. 38.

    Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, et al. Simultaneous activation of induced heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) reveals a mechanism for regulation of tumor progression. J Biol Chem. 2016;291:9991–10005.

    CAS  Article  Google Scholar 

  39. 39.

    Wang J, He L, Combs CA, Roderiquez G, Norcross MA. Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther. 2006;5:2474–83.

    CAS  Article  Google Scholar 

  40. 40.

    Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell. 2005;16:1282–95.

    CAS  Article  Google Scholar 

  41. 41.

    Chu KM, Minogue S, Hsuan JJ, Waugh MG. Differential effects of the phosphatidylinositol 4-kinases, PI4KIIalpha and PI4KIIIbeta, on Akt activation and apoptosis. Cell Death Dis. 2010;1:e106.

    CAS  Article  Google Scholar 

  42. 42.

    Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteom. 2008;7:1587–97.

    CAS  Article  Google Scholar 

  43. 43.

    Hammond GR, Schiavo G, Irvine RF. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J. 2009;422:23–35.

    CAS  Article  Google Scholar 

Download references


Special thanks to Dr. Balla for providing PI4KIIIα and EFR3B expression constructs, Dr. DeCamilli for TTC7B construct and Dr. Mayinger for anti-Sac1 antibodies. We would like to thank Mr. Ussama A. Khan for technical assistance in preparing data. We also thank Astellas/Medivation for supporting clinical protocol for human tumor biopsy material collection. Supported by U.S. Department of Defense, W81XWH-09-1-0250, NIH-NCI Grant CA151557 and Fund for Cancer Research.

Author contributions

SRC conceived and coordinated the study and wrote the manuscript. AS provided expertize in preparation of data in Table 1, participated in study design and reviewed the manuscript. DS designed and performed experiments in Figs. 15 and participated in manuscript writing. LS and YL designed and performed experiments in Figs. 1, 5 and 6. BS performed experiments in Fig. 3 and supplementary figure 6. NJC and PMS designed and performed experiments in Fig. 1 and supplementary figure 2 and wrote corresponding methodology and participated in interpretation of data. MLC, SS, and UV were involved in study design of data in Fig. 6 and review of manuscript. All authors reviewed the results and approved the final version of manuscript.

Author information



Corresponding author

Correspondence to Sreenivasa R. Chinni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sbrissa, D., Semaan, L., Govindarajan, B. et al. A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 38, 332–344 (2019).

Download citation

Further reading


Quick links