Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bruton’s tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma

Abstract

Aberrant activation of anaplastic lymphoma kinase (ALK) can cause sporadic and familial neuroblastoma. Using a proteomics approach, we identified Bruton’s tyrosine kinase (BTK) as a novel ALK interaction partner, and the physical interaction was confirmed by co-immunoprecipitation. BTK is expressed in neuroblastoma cell lines and tumor tissues. Its high expression correlates with poor relapse-free survival probability of neuroblastoma patients. Mechanistically, we demonstrated that BTK potentiates ALK-mediated signaling in neuroblastoma, and increases ALK stability by reducing ALK ubiquitination. Both ALKWT and ALKF1174L can induce BTK phosphorylation and higher capacity of ALKF1174L is observed. Furthermore, the BTK inhibitor ibrutinib can effectively inhibit the growth of neuroblastoma xenograft in nude mice, and the combination of ibrutinib and the ALK inhibitor crizotinib further enhances the inhibition. Our study provides strong rationale for clinical trial of ALK-positive neuroblastoma using ibrutinib or the combination of ibrutinib and ALK inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    Article  Google Scholar 

  2. Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 2015;66:49–63.

    Article  CAS  Google Scholar 

  3. Tabbo F, Barreca A, Piva R, Inghirami G, European TCLSG. ALK signaling and target therapy in anaplastic large cell lymphoma. Front Oncol. 2012;2:41.

    Article  Google Scholar 

  4. Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther. 2013;138:294–309.

    Article  CAS  Google Scholar 

  5. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397–411.

    Article  CAS  Google Scholar 

  6. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  Google Scholar 

  7. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  Google Scholar 

  8. Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem. 2016;109:314–41.

    Article  CAS  Google Scholar 

  9. Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015;21:2436–9.

    Article  CAS  Google Scholar 

  10. Larkins E, Blumenthal GM, Chen H, He K, Agarwal R, Gieser G, et al. FDA approval: Alectinib for the treatment of metastatic, alk-positive non-small cell lung cancer following crizotinib. Clin Cancer Res. 2016;22:5171–6.

    Article  CAS  Google Scholar 

  11. Isozaki H, Ichihara E, Takigawa N, Ohashi K, Ochi N, Yasugi M, et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 2016;76:1506–16.

    Article  CAS  Google Scholar 

  12. Kodityal S, Elvin JA, Squillace R, Agarwal N, Miller VA, Ali SM, et al. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib. Lung Cancer. 2016;92:19–21.

    Article  Google Scholar 

  13. Geoerger B, Schulte J, Zwaan CM, Casanova M, Fischer M, Moreno L et al. Phase I study of ceritinib in pediatric patients (Pts) with malignancies harboring a genetic alteration in ALK (ALK plus): Safety, pharmacokinetic (PK), and efficacy results. J Clin Oncol. 2015; 33.

  14. Mosse YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.

    Article  CAS  Google Scholar 

  15. Wang HQ, Halilovic E, Li X, Liang J, Cao Y, Rakiec DP, et al. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models. eLife. 2017;6:e17137.

    Article  Google Scholar 

  16. Chakraborty R, Kapoor P, Ansell SM, Gertz MA. Ibrutinib for the treatment of Waldenstrom macroglobulinemia. Expert Rev Hematol. 2015;8:569–79.

    Article  CAS  Google Scholar 

  17. Guo W, Liu R, Bhardwaj G, Yang JC, Changou C, Ma AH, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409.

    Article  CAS  Google Scholar 

  18. Grassilli E, Pisano F, Cialdella A, Bonomo S, Missaglia C, Cerrito MG, et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene. 2016;35:4368–78.

    Article  CAS  Google Scholar 

  19. George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455:975–8.

    Article  CAS  Google Scholar 

  20. Sun J, Mohlin S, Lundby A, Kazi JU, Hellman U, Pahlman S, et al. The PI3-kinase isoform p110delta is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner. Oncogene. 2014;33:5360–9.

    Article  CAS  Google Scholar 

  21. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107:13075–80.

    Article  CAS  Google Scholar 

  22. Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci. 2004;117:3319–29.

    Article  CAS  Google Scholar 

  23. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  CAS  Google Scholar 

  24. MacGurn JA, Hsu PC, Emr SD. Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem. 2012;81:231–59.

    Article  CAS  Google Scholar 

  25. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31:119–32.

    Article  CAS  Google Scholar 

  26. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    Article  CAS  Google Scholar 

  27. Ding N, Li X, Shi Y, Ping L, Wu L, Fu K, et al. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma. Oncotarget. 2015;6:15122–36.

    PubMed  PubMed Central  Google Scholar 

  28. Herman SE, Mustafa RZ, Gyamfi JA, Pittaluga S, Chang S, Chang B, et al. Ibrutinib inhibits BCR and NF-kappaB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood. 2014;123:3286–95.

    Article  CAS  Google Scholar 

  29. Braun FK, Mathur R, Sehgal L, Wilkie-Grantham R, Chandra J, Berkova Z, et al. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis. PLoS ONE. 2015;10:e0117994.

    Article  Google Scholar 

  30. Metro G, Tazza M, Matocci R, Chiari R, Crino L. Optimal management of ALK-positive NSCLC progressing on crizotinib. Lung Cancer. 2017;106:58–66.

    Article  Google Scholar 

  31. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–43.

    Article  CAS  Google Scholar 

  32. Roskoski R Jr. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacol Res. 2016;113:395–408.

    Article  CAS  Google Scholar 

  33. Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017;3:a001115.

    Article  Google Scholar 

  34. Yau NK, Fong AY, Leung HF, Verhoeft KR, Lim QY, Lam WY, et al. A Pan-review of ALK mutations: Implications for carcinogenesis and therapy. Curr Cancer Drug Targets. 2015;15:327–36.

    Article  CAS  Google Scholar 

  35. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  CAS  Google Scholar 

  36. Smith CI. From identification of the BTK kinase to effective management of leukemia. Oncogene. 2016;36:2045–53.

    Article  Google Scholar 

  37. Tucker DL, Rule SA. Ibrutinib for mantle cell lymphoma. Future Oncol. 2016;12:477–91.

    Article  CAS  Google Scholar 

  38. Vela CM, McBride A, Jaglowski SM, Andritsos LA. Ibrutinib for treatment of chronic lymphocytic leukemia. Am J Health-Syst Pharm: AJHP: Off J Am Soc Health-Syst Pharm. 2016;73:367–75.

    Article  CAS  Google Scholar 

  39. de Claro RA, McGinn KM, Verdun N, Lee SL, Chiu HJ, Saber H, et al. FDA approval: Ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukemia. Clin Cancer Res. 2015;21:3586–90.

    Article  Google Scholar 

  40. Souttou B, Carvalho NB, Raulais D, Vigny M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J Biol Chem. 2001;276:9526–31.

    Article  CAS  Google Scholar 

  41. Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, et al. The proto-oncogene transcription factor Ets1 regulates neural crest development through histone deacetylase 1 to mediate output of bone morphogenetic protein signaling. J Biol Chem. 2015;290:21925–38.

    Article  CAS  Google Scholar 

  42. Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol: CB. 2004;14:1436–50.

    Article  CAS  Google Scholar 

  43. Li Y, Bouchlaka MN, Wolff J, Grindle KM, Lu L, Qian S, et al. FBXO10 deficiency and BTK activation upregulate BCL2 expression in mantle cell lymphoma. Oncogene. 2016;35:6223–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marc Vigny for kindly providing the ALKWT and ALKF1174L constructs. This work is supported by the Research Grants Council of Hong Kong (CUHK24100414, CUHK14167017) to HZ, the grants from Guangdong Natural Science of Foundation (2017A030313209) and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research (2017B030301018) and Shenzhen Key Laboratory of Cell Microenvironment (ZDSYS20140509142721429) to YD, the National Natural Science Foundation of China (81660473) and West China Top Class Discipline Project (NXYLXK2017B07) in Basic Medical Sciences of Ningxia Medical University to JS, One-off Funding for KIZ-CUHK Joint Lab/Research Collaboration from CUHK to WYC, the National Natural Science Foundation of China (31471367, 31671519) to YC, and TL is supported by the Graduate Studentships from CUHK. We thank colleagues in our laboratories for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Sun or Hui Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Deng, Y., Shi, Y. et al. Bruton’s tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene 37, 6180–6194 (2018). https://doi.org/10.1038/s41388-018-0397-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0397-7

This article is cited by

Search

Quick links