Tamoxifen overrides autophagy inhibition in Beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX


Autophagy is an evolutionarily conserved process regulating cellular homeostasis via digestion of dysfunctional proteins and whole cellular organelles by mechanisms, involving their enclosure into double-membrane vacuoles that are subsequently fused to lysosomes. Glioma stem cells utilize autophagy as a main mechanism of cell survival and stress response. Most recently, we and others demonstrated induction of autophagy in gliomas in response to treatment with chemical drugs, such as temozolomide (TMZ) or oncolytic adenoviruses (Ads). As autophagy has been implicated in the mechanism of Ad-mediated cell killing, autophagy deficiency in some glioma tumors could be the reason for their resistance to oncolysis. Despite the observed connection, the exact relationship between autophagy-activating cell signaling and adenoviral infection remains unclear. Here, we report that inhibition of autophagy in target glioma cells induces their resistance to killing by oncolytic agent CRAd-S-5/3. Furthermore, we found that downregulation of autophagy inducer Beclin-1 inhibits replication-competent Ad-induced oncolysis of human glioma by suppressing cell proliferation and inducing premature senescence. To overcome the autophagy-deficient state of such glioma cells and restore their susceptibility to oncolytic Ad infection, we propose treating glioma tumors with an anticancer drug tamoxifen (TAM) as a means to induce apoptosis in Ad-targeted cancer cells via upregulation of BAX/PUMA genes. In agreement with the above hypothesis, our data suggest that TAM improves susceptibility of Beclin-1-deficient glioma cells to CRAd-S-5/3 oncolysis by means of activating autophagy and pro-apoptotic signaling pathways in the target cancer cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther. 2009;9:422–7.

    CAS  Article  Google Scholar 

  2. 2.

    Ulasov IV Sonabend AM, Nandi S, Khramtsov A, Han Y, Lesniak MS. Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo. Br J Cancer. 2009;100:1154–64.

    Article  Google Scholar 

  3. 3.

    Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR. Brain tumor survival: results from the National Cancer Data Base. J Neurooncol. 1998;40:151–60.

    CAS  Article  Google Scholar 

  4. 4.

    Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26:1401–10.

    CAS  PubMed  Google Scholar 

  5. 5.

    Lefranc F, Kiss R. Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus. 2006;20:E7.

    Article  Google Scholar 

  6. 6.

    Lefranc F, Rynkowski M, DeWitte O, Kiss R. Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv Tech Stand Neurosurg. 2009;34:3–35.

    CAS  Article  Google Scholar 

  7. 7.

    Piya S, White EJ, Klein SR, Jiang H, McDonnell TJ, Gomez-Manzano C, et al. The E1B19K oncoprotein complexes with Beclin 1 to regulate autophagy in adenovirus-infected cells. PLoS ONE. 2011;6:e29467.

    CAS  Article  Google Scholar 

  8. 8.

    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57.

    CAS  Article  Google Scholar 

  9. 9.

    Tyler MA, Ulasov IV, Lesniak MS. Cancer cell death by design: apoptosis, autophagy and glioma virotherapy. Autophagy. 2009;5:856–7.

    Article  Google Scholar 

  10. 10.

    Huang X, Bai HM, Chen L, Li B, Lu YC. Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci. 2010;17:1515–9.

    CAS  Article  Google Scholar 

  11. 11.

    Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy. 2009;5:930–6.

    Article  Google Scholar 

  12. 12.

    Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois CE, Haider S, et al. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther. 2014;15:1468–78.

    CAS  Article  Google Scholar 

  13. 13.

    Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.

    CAS  Article  Google Scholar 

  14. 14.

    Zhang M, Zhou YF, Gong JY, Gao CB, Li SL. Expression of autophagy-related protein LC3B, p62, and cytoplasmic p53 in human retinoblastoma tissues. Eur Rev Med Pharmacol Sci. 2016;20:3152–60.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J. 2000;347:543–51.

    CAS  Article  Google Scholar 

  16. 16.

    Tepper CG, Seldin MF, Mudryj M. Fas-mediated apoptosis of proliferating, transiently growth-arrested, and senescent normal human fibroblasts. Exp Cell Res. 2000;260:9–19.

    CAS  Article  Google Scholar 

  17. 17.

    Kang HT, Lee KB, Kim SY, Choi HR, Park SC. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE. 2011;6:e23367.

    CAS  Article  Google Scholar 

  18. 18.

    Mirochnik Y, Veliceasa D, Williams L, Maxwell K, Yemelyanov A, Budunova I, et al. Androgen receptor drives cellular senescence. PLoS ONE. 2012;7:e31052.

    CAS  Article  Google Scholar 

  19. 19.

    Caino MC, Meshki J, Kazanietz MG. Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis. 2009;14:392–408.

    CAS  Article  Google Scholar 

  20. 20.

    Schilbach K, Alkhaled M, Welker C, Eckert F, Blank G, Ziegler H, et al. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology. 2015;4:e1014760.

    Article  Google Scholar 

  21. 21.

    Abbadie C, Pluquet O, Pourtier A, Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?. Cell Mol Life Sci. 2017;74:4471–4509.

    CAS  Article  Google Scholar 

  22. 22.

    Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    CAS  Article  Google Scholar 

  23. 23.

    Kumar M, Seeger W, Voswinckel R. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2014;51:323–33.

    Article  Google Scholar 

  24. 24.

    Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015;36:217–28.

    CAS  Article  Google Scholar 

  25. 25.

    Maciel-Baron LA, Morales-Rosales SL, Aquino-Cruz AA, Triana-Martinez F, Galvan-Arzate S, Luna-Lopez A, et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr). 2016;38:26.

    CAS  Article  Google Scholar 

  26. 26.

    Vater CA, Bartle LM, Dionne CA, Littlewood TD, Goldmacher VS. Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53-/- mouse embryo fibroblasts. Oncogene. 1996;13:739–48.

    CAS  PubMed  Google Scholar 

  27. 27.

    Ulasov IV, Shah N, Kaverina NV, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977–87.

    Article  Google Scholar 

  28. 28.

    Fernandez-Cuesta L, Anaganti S, Hainaut P, Olivier M. p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines. Int J Cancer. 2011;128:1813–21.

    CAS  Article  Google Scholar 

  29. 29.

    Criollo A, Dessen P, Kroemer G. DRAM: a phylogenetically ancient regulator of autophagy. Cell Cycle. 2009;8:2319–20.

    CAS  Article  Google Scholar 

  30. 30.

    Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ. 2009;16:1135–45.

    CAS  Article  Google Scholar 

  31. 31.

    Jiang H, White EJ, Rios-Vicil CI, Xu J, Gomez-Manzano C, Fueyo J. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J Virol. 2011;85:4720–9.

    CAS  Article  Google Scholar 

  32. 32.

    Salminen A, Kaarniranta K, Kauppinen A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev. 2013;12:520–34.

    CAS  Article  Google Scholar 

  33. 33.

    Fimia GM, Di Bartolomeo S, Piacentini M, Cecconi F. Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy. 2011;7:115–7.

    Article  Google Scholar 

  34. 34.

    Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.

    CAS  Article  Google Scholar 

  35. 35.

    Shukla S, Patric IR, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, et al. Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J Biol Chem. 2014;289:22306–18.

    CAS  Article  Google Scholar 

  36. 36.

    Ro SH, Jung CH, Hahn WS, Xu X, Kim YM, Yun YS, et al. Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy. 2013;9:2103–14.

    CAS  Article  Google Scholar 

  37. 37.

    Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, et al. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci. 2003;23:8586–95.

    CAS  Article  Google Scholar 

  38. 38.

    Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, et al. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 2014;34:6546–56.

    CAS  Article  Google Scholar 

  39. 39.

    Villalonga-Planells R, Coll-Mulet L, Martinez-Soler F, Castano E, Acebes JJ, Gimenez-Bonafe P, et al. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme. PLoS ONE. 2011;6:e18588.

    CAS  Article  Google Scholar 

  40. 40.

    Tripathi R, Ash D, Shaha C. Beclin-1-p53 interaction is crucial for cell fate determination in embryonal carcinoma cells. J Cell Mol Med. 2014;18:2275–86.

    CAS  Article  Google Scholar 

  41. 41.

    Levine B, Abrams J. p53: the Janus of autophagy? Nat Cell Biol. 2008;10:637–9.

    CAS  Article  Google Scholar 

  42. 42.

    Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, et al. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet. 2014;10:e1004409.

    Article  Google Scholar 

  43. 43.

    Joshi A, Iyengar R, Joo JH, Li-Harms XJ, Wright C, Marino R, et al. Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ. 2016;23:216–30.

    CAS  Article  Google Scholar 

  44. 44.

    Alers S, Loffler AS, Wesselborg S, Stork B. The incredible ULKs. Cell Commun Signal. 2012;10:7.

    CAS  Article  Google Scholar 

  45. 45.

    Gao W, Shen Z, Shang L, Wang X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 2011;18:1598–607.

    CAS  Article  Google Scholar 

  46. 46.

    Hothi P, Martins TJ, Chen L, Deleyrolle L, Yoon JG, Reynolds B, et al. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget. 2012;3:1124–36.

    Article  Google Scholar 

  47. 47.

    Thomas MA, Broughton RS, Goodrum FD, Ornelles DA. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus. J Virol. 2009;83:2406–16.

    CAS  Article  Google Scholar 

  48. 48.

    Graham FL. Growth of 293 cells in suspension culture. J Gen Virol. 1987;68(Pt 3):937–40.

    Article  Google Scholar 

  49. 49.

    Liu C, Pham K, Luo D, Reynolds BA, Hothi P, Foltz G, et al. Expression and functional heterogeneity of chemokine receptors CXCR4 and CXCR7 in primary patient-derived glioblastoma cells. PLoS ONE. 2013;8:e59750.

    CAS  Article  Google Scholar 

Download references


This research was supported by Russian Fund of Fundamental Research (number 11 411.0008700. 13.082 and number 13 411. 1008799.13.120 Russia, MAB) and private donors. We are grateful to Dr. Cobbs for providing patient-derived tumor cells and to Dr. Cobbs’s laboratory personnel for their support and technical assistance with experiments.

Author contributions

NVK, MAB, JM, and IVU performed the experiments. AVB, ZGK, AIK, AK, DO, TX, MSL, and IVU analyzed the data and wrote/edited the manuscript. AK and IVU assessed IHC score. TX performed statistical evaluation. MAB, AVB, and IVU designed the experiments, analyzed and interpreted the data, and proofread the manuscript.

Author information



Corresponding author

Correspondence to Ilya V. Ulasov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaverina, N.V., Kadagidze, Z.G., Borovjagin, A.V. et al. Tamoxifen overrides autophagy inhibition in Beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX. Oncogene 37, 6069–6082 (2018). https://doi.org/10.1038/s41388-018-0395-9

Download citation

Further reading


Quick links