Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma

Abstract

It remains unclear whether PAX6 acts as a crucial transcription factor for lung cancer stem cell (CSC) traits. We demonstrate that PAX6 acts as an oncogene responsible for induction of cancer stemness properties in lung adenocarcinoma (LUAD). Mechanistically, PAX6 promotes GLI transcription, resulting in SOX2 upregulation directly by the binding of GLI to the proximal promoter region of the SOX2 gene. The overexpressed SOX2 enhances the expression of key pluripotent factors (OCT4 and NANOG) and suppresses differentiation lineage factors (HOPX and NKX2-1), driving cancer cells toward a stem-like state. In contrast, in the differentiated non-CSCs, PAX6 is transcriptionally silenced by its promoter methylation. In human lung cancer tissues, the positive linear correlations of PAX6 expression with GLI and SOX2 expression and its negative correlations with HOPX and NKX2-1 expression were observed. Therapeutically, the blockade of the PAX6-GLI-SOX2 signaling axis elicits a long-lasting therapeutic efficacy by limiting CSC expansion following chemotherapy. Furthermore, a methylation panel including the PAX6 gene yielded a sensitivity of 79.1% and specificity of 83.3% for cancer detection using serum DNA from stage IA LUAD. Our findings provide a rationale for targeting the PAX6-GLI-SOX2 signaling axis with chemotherapy as an effective therapeutic strategy and support the clinical utility of PAX6 gene promoter methylation as a biomarker for early lung cancer detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eramo A, Haas TL, De Maria R. Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene. 2010;29:4625–35.

    Article  CAS  Google Scholar 

  2. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.

    Article  CAS  Google Scholar 

  3. Asami M, Pilz GA, Ninkovic J, Godinho L, Schroeder T, Huttner WB, et al. The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development. 2011;138:5067–78.

    Article  CAS  Google Scholar 

  4. Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, et al. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 2009;5:e1000511.

    Article  Google Scholar 

  5. Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA. PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol. 2007;73:1–14.

    Article  CAS  Google Scholar 

  6. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001;105:43–55.

    Article  CAS  Google Scholar 

  7. Yamaoka T, Yano M, Yamada T, Matsushita T, Moritani M, Ii S, et al. Diabetes and pancreatic tumours in transgenic mice expressing Pa x 6. Diabetologia. 2000;43:332–9.

    Article  CAS  Google Scholar 

  8. Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells. 2008;26:1663–72.

    Article  CAS  Google Scholar 

  9. Hu B, Wang Q, Wang YA, Hua S, Sauve CG, Ong D, et al. Epigenetic activation of WNT5A drives glioblastoma stem. Cell Differ Invasive Growth Cell. 2016;167:e18.

    Google Scholar 

  10. Shyr CR, Tsai MY, Yeh S, Kang HY, Chang YC, Wong PL, et al. Tumor suppressor PAX6 functions as androgen receptor co-repressor to inhibit prostate cancer growth. Prostate. 2010;70:190–9.

    PubMed  PubMed Central  Google Scholar 

  11. Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, et al. PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res. 2006;66:9809–17.

    Article  CAS  Google Scholar 

  12. Lang D, Mascarenhas JB, Powell SK, Halegoua J, Nelson M, Ruggeri BA. PAX6 is expressed in pancreatic adenocarcinoma and is downregulated during induction of terminal differentiation. Mol Carcinog. 2008;47:148–56.

    Article  CAS  Google Scholar 

  13. Mascarenhas JB, Young KP, Littlejohn EL, Yoo BK, Salgia R, Lang D. PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem. 2009;284:27524–32.

    Article  CAS  Google Scholar 

  14. Zhao X, Yue W, Zhang L, Ma L, Jia W, Qian Z, et al. Downregulation of PAX6 by shRNA inhibits proliferation and cell cycle progression of human non-small cell lung cancer cell lines. PLoS ONE. 2014;9:e85738.

    Article  Google Scholar 

  15. Shiraishi M, Sekiguchi A, Terry MJ, Oates AJ, Miyamoto Y, Chuu YH, et al. A comprehensive catalog of CpG islands methylated in human lung adenocarcinomas for the identification of tumor suppressor genes. Oncogene. 2002;21:3804–13.

    Article  CAS  Google Scholar 

  16. Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP. DNA methylation biomarkers for lung cancer. Tumour Biol. 2012;33:287–96.

    Article  CAS  Google Scholar 

  17. Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 2004;4:707–17.

    Article  CAS  Google Scholar 

  18. Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther. 2016;158:71–90.

    Article  CAS  Google Scholar 

  19. Ooki A, Maleki Z, Tsay JJ, Goparaju C, Brait M, Turaga N, et al. A panel of novel detection and prognostic methylated DNA markers in primary non-small cell lung cancer and serum DNA. Clin Cancer Res. 2017;23:7141–52.

    Article  CAS  Google Scholar 

  20. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    Article  CAS  Google Scholar 

  21. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.

    Article  CAS  Google Scholar 

  22. Justilien V, Fields AP. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res. 2015;21:505–13.

    Article  CAS  Google Scholar 

  23. Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, et al. YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res. 2018;78:168–81.

    Article  CAS  Google Scholar 

  24. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  Google Scholar 

  25. Santini R, Pietrobono S, Pandolfi S, Montagnani V, D’Amico M, Penachioni JY, et al. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014;33:4697–708.

    Article  CAS  Google Scholar 

  26. Bora-Singhal N, Perumal D, Nguyen J, Chellappan S. Gli1-mediated regulation of Sox2 facilitates self-renewal of stem-like cells and confers resistance to EGFR inhibitors in non-small cell lung cancer. Neoplasia. 2015;17:538–51.

    Article  CAS  Google Scholar 

  27. Infante P, Alfonsi R, Botta B, Mori M, Di Marcotullio L. Targeting GLI factors to inhibit the Hedgehog pathway. Trends Pharmacol Sci. 2015;36:547–58.

    Article  CAS  Google Scholar 

  28. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40:6725–40.

    Article  CAS  Google Scholar 

  29. Cheung WK, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE, et al. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell. 2013;23:725–38.

    Article  CAS  Google Scholar 

  30. Watanabe H, Meyerson M. Hopping between differentiation states in lung adenocarcinoma. Cancer Cell. 2013;23:707–9.

    Article  CAS  Google Scholar 

  31. Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee YC, et al. Cisplatin selects for multidrug-resistant CD133 + cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013;73:406–16.

    Article  CAS  Google Scholar 

  32. Holland PW, Booth HA, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47.

    Article  Google Scholar 

  33. Greenberg AK, Lu F, Goldberg JD, Eylers E, Tsay JC, Yie TA, et al. CT scan screening for lung cancer: risk factors for nodules and malignancy in a high-risk urban cohort. PLoS ONE. 2012;7:e39403.

    Article  CAS  Google Scholar 

  34. Nam HS. Malignant pleural effusion: medical approaches for diagnosis and management. Tuberc Respir Dis. 2014;76:211–7.

    Article  Google Scholar 

  35. Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 2001;15:1272–86.

    Article  CAS  Google Scholar 

  36. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87:219–44.

    Article  CAS  Google Scholar 

  37. Yin Z, Gonzales L, Kolla V, Rath N, Zhang Y, Lu MM, et al. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am J Physiol Lung Cell Mol Physiol. 2006;291:L191–9.

    Article  CAS  Google Scholar 

  38. Shen Y, Chow J, Wang Z, Fan G. Abnormal CpG island methylation occurs during in vitro differentiation of human embryonic stem cells. Hum Mol Genet. 2006;15:2623–35.

    Article  CAS  Google Scholar 

  39. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    Article  CAS  Google Scholar 

  40. Po A, Silvano M, Miele E, Capalbo C, Eramo A, Salvati V, et al. Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene. 2017;36:4641–52.

    Article  CAS  Google Scholar 

  41. Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V. Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res. 2011;21:1349–59.

    Article  CAS  Google Scholar 

  42. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  Google Scholar 

  43. Tammemagi MC, Katki HA, Hocking WG, Church TR, Caporaso N, Kvale PA, et al. Selection criteria for lung-cancer screening. N Engl J Med. 2013;368:728–36.

    Article  CAS  Google Scholar 

  44. Blanchon T, Brechot JM, Grenier PA, Ferretti GR, Lemarie E, Milleron B, et al. Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low-dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer. 2007;58:50–8.

    Article  Google Scholar 

  45. Begum S, Brait M, Dasgupta S, Ostrow KL, Zahurak M, Carvalho AL, et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin Cancer Res. 2011;17:4494–503.

    Article  CAS  Google Scholar 

  46. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  47. Ooki A, Yamashita K, Kikuchi S, Sakuramoto S, Katada N, Kokubo K, et al. Potential utility of HOP homeobox gene promoter methylation as a marker of tumor aggressiveness in gastric cancer. Oncogene. 2010;29:3263–75.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Flight Attendant Medical Research Institute Clinical Innovative Award 103015 (M.O. Hoque), NCI R01CA206027 (M.O. Hoque), the Career Development award from SPORE in Cervical Cancer Grants P50 CA098252 (MOH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad O. Hoque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooki, A., Dinalankara, W., Marchionni, L. et al. Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma. Oncogene 37, 5967–5981 (2018). https://doi.org/10.1038/s41388-018-0373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0373-2

This article is cited by

Search

Quick links