Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism

Abstract

Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  Google Scholar 

  2. Wei KR, C W, Zhang SW, Zheng RS, Wang YN, Liang ZH. Epidemiology of uterine corpus cancer in some cancer registering areas of China from 2003 to 2007. Chin J Obstet Gynecol. 2012;47:445–51.

    Google Scholar 

  3. Wei KR, C W, Zhang SW, Zheng RS, Liang ZH. An analysis of incidence and mortality of corpus uteri cancer in China, 2009. China Cancer. 2013;22:605–11.

    Google Scholar 

  4. Sorosky JI. Endometrial cancer. Obstet Gynecol. 2012;120:383–97.

    Article  PubMed  Google Scholar 

  5. Chaudhry P, Asselin E. Resistance to chemotherapy and hormone therapy in endometrial cancer. Endocr Relat Cancer. 2009;16:363–80.

    Article  CAS  PubMed  Google Scholar 

  6. J T, Chen N, Zhao F, W XJ, Kong B, Z W, et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 2010;70:5486–96.

    Article  CAS  Google Scholar 

  7. Saygin C, Wiechert A, Rao VS, Alluri R, Connor E, Thiagarajan PS, et al. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J Exp Med. 2017;214:2715–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez AV, Pasupuleti V, Benites-Zapata VA, Thota P, Deshpande A, Perez-Lopez FR. Insulin resistance and endometrial cancer risk: a systematic review and meta-analysis. Eur J Cancer. 2015;51:2747–58.

    Article  CAS  PubMed  Google Scholar 

  9. Goodwin PJ, Ligibel JA, Stambolic V. Metformin in breast cancer: time for action. J Clin Oncol. 2009;27:3271–3.

    Article  CAS  PubMed  Google Scholar 

  10. Wang LW, Li ZS, Zou DW, Jin ZD, Gao J, Xu GM. Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol. 2008;14:7192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan BK, Adya R, Chen J, Lehnert H, Sant Cassia LJ, Randeva HS. Metformin treatment exerts antiinvasive and antimetastatic effects in human endometrial carcinoma cells. J Clin Endocrinol Metab. 2011;96:808–16.

    Article  CAS  PubMed  Google Scholar 

  12. El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol. 2017;39:1010428317692235.

    PubMed  Google Scholar 

  13. Cuyas E, Martin-Castillo B, Bosch-Barrera J, Menendez JA. Metformin inhibits RANKL and sensitizes cancer stem cells to denosumab. Cell Cycle. 2017;16:1022–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li B, Li X, Ni Z, Zhang Y, Zeng Y, Yan X, et al. Dichloroacetate and metformin synergistically suppress the growth of ovarian cancer cells. Oncotarget. 2016;7:59458–70.

    PubMed  PubMed Central  Google Scholar 

  15. Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23:1542–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu G, Fang W, Xia T, Chen Y, Gao Y, Jiao X, et al. Metformin potentiates rapamycin and cisplatin in gastric cancer in mice. Oncotarget. 2015;6:12748–62.

    PubMed  PubMed Central  Google Scholar 

  17. Hanna RK, Zhou C, Malloy KM, Sun L, Zhong Y, Gehrig PA, et al. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol. 2012;125:458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F, Xue Y. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS ONE. 2013;8:e81264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhuo Z, Wang A, Yu H. Metformin targeting autophagy overcomes progesterone resistance in endometrial carcinoma. Arch Gynecol Obstet. 2016;294:1055–61.

    Article  CAS  PubMed  Google Scholar 

  20. Zarei M, Lal S, Parker SJ, Nevler A, Vaziri-Gohar A, Dukleska K, et al. Posttranscriptional upregulation of IDH1 by HuR establishes a powerful survival phenotype in pancreatic cancer cells. Cancer Res. 2017;77:4460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvert AE, Chalastanis A, Wu Y, Hurley LA, Kouri FM, Bi Y, et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 2017;19:1858–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J-B, Dong D-F, Wang M-D, Gao K. IDH1 overexpression induced chemotherapy resistance and IDH1 mutation enhanced chemotherapy sensitivity in glioma cells in vitro and in vivo. Asian Pac J Cancer Prev. 2014;15:427–32.

    Article  PubMed  Google Scholar 

  23. Yang SH, Li S, Lu G, Xue H, Kim DH, Zhu JJ, et al. Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget. 2016;7:78787–803.

    PubMed  PubMed Central  Google Scholar 

  24. Valtorta S, Dico AL, Raccagni I, Gaglio D, Belloli S, Politi LS, et al. Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget. 2017;8:113090–104.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma QL, Wang JH, Wang YG, Hu C, Mu QT, Yu MX, et al. High IDH1 expression is associated with a poor prognosis in cytogenetically normal acute myeloid leukemia. Int J Cancer. 2015;137:1058–65.

    Article  CAS  PubMed  Google Scholar 

  26. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kastl L, Brown I, Schofield AC. Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. Int J Oncol. 2010;36:1235–41.

    CAS  PubMed  Google Scholar 

  28. Kwon OH, Park JL, Baek SJ, Noh SM, Song KS, Kim SY, et al. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci. 2013;104:391–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kang KA, Piao MJ, Kim KC, Kang HK, Chang WY, Park IC, et al. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 2014;5:e1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991;266:11632–9.

    CAS  PubMed  Google Scholar 

  31. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  32. Khor TO, Yu S, Kong AN. Dietary cancer chemopreventive agents - targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008;74:1540–7.

    Article  CAS  PubMed  Google Scholar 

  33. Yates MS, Tauchi M, Katsuoka F, Flanders KC, Liby KT, Honda T, et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther. 2007;6:154–62.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38:769–89.

    Article  CAS  PubMed  Google Scholar 

  35. MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igarashi K, et al. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis. 2009;30:1571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79.

    Article  CAS  PubMed  Google Scholar 

  37. Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol. 2010;220:446–51.

    Article  CAS  PubMed  Google Scholar 

  38. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3:e420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68:1303–9.

    Article  CAS  PubMed  Google Scholar 

  40. Stacy DR, Ely K, Massion PP, Yarbrough WG, Hallahan DE, Sekhar KR, et al. Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck. 2006;28:813–8.

    Article  PubMed  Google Scholar 

  41. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 2010;9:336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ikeda H, Nishi S, Sakai M. Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem J. 2004;380:515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett. 2008;260:96–108.

    Article  CAS  PubMed  Google Scholar 

  44. Shim GS, Manandhar S, Shin DH, Kim TH, Kwak MK. Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic Biol Med. 2009;47:1619–31.

    Article  CAS  PubMed  Google Scholar 

  45. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 2008;68:7975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008;29:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen N, Yi X, Abushahin N, Pang S, Zhang D, Kong B, et al. Nrf2 expression in endometrial serous carcinomas and its precancers. Int J Clin Exp Pathol. 2010;4:85–96.

    PubMed  PubMed Central  Google Scholar 

  48. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong L, Zhou Q, Zhang Z, Zhu Y, Duan T, Feng Y. Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J Obstet Gynaecol Res. 2012;38:1077–85.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, He C, Huang X. Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget. 2017;8:75206–16.

    PubMed  PubMed Central  Google Scholar 

  51. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. SongTao Q, Lei Y, Si G, YanQing D, HuiXia H, XueLin Z, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269–73.

    Article  CAS  PubMed  Google Scholar 

  53. Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75:1560–6.

    Article  CAS  PubMed  Google Scholar 

  54. Cairncross JG, Wang M, Jenkins RB, Shaw EG, Giannini C, Brachman DG, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. 2014;32:783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia L, Liu Y, Yi X, Miron A, Crum CP, Kong B, et al. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence supporting its precancer nature for endometrial serous carcinoma. Clin Cancer Res. 2008;14:2263–9.

    Article  CAS  PubMed  Google Scholar 

  56. Xiang L, Zheng W, Kong B. Detection of PAX8 and p53 is beneficial in recognizing metastatic carcinomas in pelvic washings, especially in cases with suspicious cytology. Gynecol Oncol. 2012;127:595–600.

    Article  CAS  PubMed  Google Scholar 

  57. Fadare O, Gwin K, Desouki MM, Crispens MA, Jones HW 3rd, Khabele D, et al. The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol. 2013;26:1101–10.

    Article  CAS  PubMed  Google Scholar 

  58. Hu X, Yu AX, Qi BW, Fu T, Wu G, Zhou M, et al. The expression and significance of IDH1 and p53 in osteosarcoma. J Exp Clin Cancer Res. 2010;29:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogura R, Tsukamoto Y, Natsumeda M, Isogawa M, Aoki H, Kobayashi T, et al. Immunohistochemical profiles of IDH1, MGMT and P53: practical significance for prognostication of patients with diffuse gliomas. Neuropathol. 2015;35:324–35.

    Article  CAS  Google Scholar 

  60. Montgomery RM, Queiroz Lde S, Rogerio F. EGFR, p53, IDH-1 and MDM2 immunohistochemical analysis in glioblastoma: therapeutic and prognostic correlation. Arq Neuropsiquiatr. 2015;73:561–8.

    Article  PubMed  Google Scholar 

  61. Sun N, Chen Z, Tan F, Zhang B, Yao R, Zhou C, et al. Isocitrate dehydrogenase 1 is a novel plasma biomarker for the diagnosis of non-small cell lung cancer. Clin Cancer Res. 2013;19:5136–45.

    Article  CAS  PubMed  Google Scholar 

  62. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015;75:4790–802.

    Article  CAS  PubMed  Google Scholar 

  63. Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, et al. Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 2017;77:1709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gasparre G, Kurelac I, Capristo M, Iommarini L, Ghelli A, Ceccarelli C, et al. A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res. 2011;71:6220–9.

    Article  CAS  PubMed  Google Scholar 

  65. Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M, Gasparre G, et al. The alpha-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab. 2017;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015;125:1591–602.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, Lonial S, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene. 2016;35:3955–64.

    Article  CAS  PubMed  Google Scholar 

  68. Keenan MM, Liu B, Tang X, Wu J, Cyr D, Stevens RD, et al. ACLY and ACC1 regulate hypoxia-induced apoptosis by modulating ETV4 via alpha-ketoglutarate. PLoS Genet. 2015;11:e1005599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Z, Dong L, Sui L, Yang Y, Liu X, Yu Y, et al. Metformin reverses progestin resistance in endometrial cancer cells by downregulating GloI expression. Int J Gynecol Cancer. 2011;21:213–21.

    Article  PubMed  Google Scholar 

  70. Feinberg AP, Koldobskiy MA, Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17:284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu T, Brandmaier S, Messias AC, Herder C, Draisma HH, Demirkan A, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67.

    Article  CAS  PubMed  Google Scholar 

  73. Antony S, Jiang G, Wu Y, Meitzler JL, Makhlouf HR, Haines DC, et al. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1alpha and p27(Kip1) expression in malignant melanoma and other human tumors. Mol Carcinog. 2017;56:2643–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, et al. HIF-1alpha activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS ONE. 2015;10:e0119762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen HF, Wu KJ. Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine. 2016;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tsai YP, Chen HF, Chen SY, Cheng WC, Wang HW, Shen ZJ, et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 2014;15:513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Y, Wang Y, Zhang Z, Park JY, Guo D, Liao H, et al. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway. Oncotarget. 2016;7:10363–72.

    PubMed  PubMed Central  Google Scholar 

  78. Do MT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med. 2014;74:21–34.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78:13–26.

    Article  CAS  PubMed  Google Scholar 

  80. Meireles CG, Pereira SA, Valadares LP, Rego DF, Simeoni LA, Guerra ENS, et al. Effects of metformin on endometrial cancer: Systematic review and meta-analysis. Gynecol Oncol. 2017;147:167–80.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Z, Zhou D, Lai Y, Liu Y, Tao X, Wang Q, et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways. Cancer Lett. 2012;319:89–97.

    Article  CAS  PubMed  Google Scholar 

  82. Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, et al. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1alpha/cyclin D1 pathway. Oncogene. 2016;35:2506–17.

    Article  CAS  PubMed  Google Scholar 

  83. Lv QY, Xie BY, Yang BY, Ning CC, Shan WW, Gu C, et al. Increased TET1 expression in inflammatory microenvironment of hyperinsulinemia enhances the response of endometrial cancer to estrogen by epigenetic modulation of GPER. J Cancer. 2017;8:894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ning C, Xie B, Zhang L, Li C, Shan W, Yang B, et al. Infiltrating macrophages induce ERalpha expression through an IL17A-mediated epigenetic mechanism to sensitize endometrial cancer cells to estrogen. Cancer Res. 2016;76:1354–66.

    Article  CAS  PubMed  Google Scholar 

  85. Tao X, Zhao N, Jin H, Zhang Z, Liu Y, Wu J, et al. FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer. 2013;20:415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Zhao Shimin (Fudan University, Shanghai, China) for providing the plasmids pcDNA3.0-TET1-flag and pRSF-Duet1-IDH1. We also thank Prof. Shi Yujiang (Harvard University, Cambridge, MA) for providing pPB-TET1 plasmid. This work was supported by grants from the National Natural Science Foundation of China (grant numbers 81672562, 81370074), the Shanghai Municipal Public Health Bureau (grant number XYQ2013119) and the “Chenxing Project” from Shanghai Jiao Tong University to ZZ. The work was also partially supported by the Mark and Jane Gibson distinguished professorship endowment fund to WZ. We thank Dr. Yinhua Yu (The University of Texas, M.D. Anderson Cancer Center) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenbo Zhang or Wenxin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Yang, L., Liao, H. et al. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 37, 5666–5681 (2018). https://doi.org/10.1038/s41388-018-0360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0360-7

This article is cited by

Search

Quick links