Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forkhead box C1 promotes colorectal cancer metastasis through transactivating ITGA7 and FGFR4 expression

Abstract

Metastatic colorectal cancer (CRC) is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying CRC metastasis remains unknown. Using an integrated approach, we identified forkhead box C1 (FOXC1) as a novel regulator of CRC metastasis. Elevated expression of FOXC1 is significantly correlated with metastasis, recurrence and reduced survival. FOXC1 overexpression promotes CRC invasion and lung metastasis, whereas FOXC1 knockdown has the opposite effect. In addition, FOXC1 directly binds its target genes integrin α7 (ITGA7) and fibroblast growth factor receptor 4 (FGFR4) and activates their expression. Genetic epistasis analysis confirmed that ITGA7 and FGFR4 act downstream of FOXC1. Furthermore, pharmaceutical inhibition of FGFR4 can reverse CRC metastasis mediated by FOXC1 overexpression. These results suggest that FOXC1 is a prognostic biomarker in CRC patients and targeting the FGFR4 signaling pathway may provide a promising strategy for the treatment of FOXC1-driven CRC metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  2. El-Shami K, Oeffinger KC, Erb NL, Willis A, Bretsch JK, Pratt-Chapman ML, et al. American Cancer Society Colorectal Cancer Survivorship Care Guidelines. CA Cancer J Clin. 2015;65:428–55.

    Article  Google Scholar 

  3. Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009;10:233–40.

    Article  CAS  Google Scholar 

  4. Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet. 2011;27:224–32.

    Article  CAS  Google Scholar 

  5. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847–59.

    Article  CAS  Google Scholar 

  6. Honkanen RA, Nishimura DY, Swiderski RE, Bennett SR, Hong S, Kwon YH, et al. A family with Axenfeld-Rieger syndrome and Peters anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene. Am J Ophthalmol. 2003;135:368–75.

    Article  CAS  Google Scholar 

  7. Mortemousque B, Amati-Bonneau P, Couture F, Graffan R, Dubois S, Colin J, et al. Axenfeld-Rieger anomaly: a novel mutation in the forkhead box C1 (FOXC1) gene in a 4-generation family. Arch Ophthalmol. 2004;122:1527–33.

    Article  CAS  Google Scholar 

  8. Somerville TD, Wiseman DH, Spencer GJ, Huang X, Lynch JT, Leong HS, et al. Frequent derepression of the mesenchymal transcription factor gene FOXC1 in acute myeloid leukemia. Cancer Cell. 2015;28:329–42.

    Article  CAS  Google Scholar 

  9. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B, et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst. 2015;107:pii:djv148.

  10. Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z, et al. Over-expression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology. 2013;57:610–24.

    Article  CAS  Google Scholar 

  11. Wang L, Gu F, Liu CY, Wang RJ, Li J, Xu JY. High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol. 2013;34:853–8.

    Article  CAS  Google Scholar 

  12. Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH. Over-expression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology. 2014;64:963–70.

    Article  Google Scholar 

  13. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010;107:15449–54.

    Article  CAS  Google Scholar 

  14. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  Google Scholar 

  15. Huang L, Huang Z, Fan Y, He L, Ye M, Shi K, et al. FOXC1 promotes proliferation and epithelial-mesenchymal transition in cervical carcinoma through the PI3K-AKT signal pathway. Am J Transl Res. 2017;9:1297–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    Article  CAS  Google Scholar 

  17. Sizemore ST, Keri RA. The forkhead box transcription factor FOXC1 promotes breast cancer invasion by inducing matrix metalloprotease 7 (MMP7) expression. J Biol Chem. 2012;287:24631–40.

    Article  CAS  Google Scholar 

  18. Huang W, Chen Z, Zhang L, Tian D, Wang D, Fan D, et al. Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice. Gastroenterology. 2015;149:1053–67 e1014.

    Article  CAS  Google Scholar 

  19. McNutt NS, Mak LL, Kim YS. Comparison of cell peripheries in the human colonic adenocarcinoma cell lines SW480 and SW620 grown in floating chamber culture, cover slip culture, athymic (nude) mice, and BALB/c mice. Lab Investig. 1981;44:309–23.

    CAS  PubMed  Google Scholar 

  20. Su Y, Guan XQ, Liu FQ, Wang YL. The effects of MIBG on the invasive properties of HepG2 hepatocellular carcinoma cells. Int J Mol Med. 2014;34:842–8.

    Article  CAS  Google Scholar 

  21. Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, et al. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res. 2013;73:5926–35.

    Article  CAS  Google Scholar 

  22. Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM. Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer Res. 2008;68:5086–95.

    Article  CAS  Google Scholar 

  23. Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5:424–37.

    Article  CAS  Google Scholar 

  24. Packer LM, Pollock PM. Paralog-specific kinase inhibition of FGFR4: adding to the arsenal of anti-FGFR agents. Cancer Discov. 2015;5:355–7.

    Article  CAS  Google Scholar 

  25. Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology. 2014;59:958–73.

    Article  CAS  Google Scholar 

  26. Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, et al. Up-regulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol. 2012;57:600–12.

    Article  CAS  Google Scholar 

  27. Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S, et al. FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene. 2018;37:1399–408.

    Article  CAS  Google Scholar 

  28. Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer. 2012;130:1036–45.

    Article  CAS  Google Scholar 

  29. Yao CC, Ziober BL, Squillace RM, Kramer RH. Alpha7 integrin mediates cell adhesion and migration on specific laminin isoforms. J Biol Chem. 1996;271:25598–603.

    Article  CAS  Google Scholar 

  30. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  Google Scholar 

  31. Ming XY, Fu L, Zhang LY, Qin YR, Cao TT, Chan KW, et al. Integrin alpha7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma. Nat Commun. 2016;7:13568.

    Article  CAS  Google Scholar 

  32. Haas TL, Sciuto MR, Brunetto L, Valvo C, Signore M, Fiori ME, et al. Integrin alpha7 is a functional marker and potential therapeutic target in glioblastoma. Cell Stem Cell. 2017;21:35–50 e39.

    Article  CAS  Google Scholar 

  33. Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine. 1999;11:729–35.

    Article  CAS  Google Scholar 

  34. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  Google Scholar 

  35. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.

    Article  CAS  Google Scholar 

  36. Li CS, Zhang SX, Liu HJ, Shi YL, Li LP, Guo XB, et al. Fibroblast growth factor receptor 4 as a potential prognostic and therapeutic marker in colorectal cancer. Biomarkers. 2014;19:81–85.

    Article  Google Scholar 

  37. Turkington RC, Longley DB, Allen WL, Stevenson L, McLaughlin K, Dunne PD, et al. Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death Dis. 2014;5:e1046.

    Article  CAS  Google Scholar 

  38. Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell. 2017;31:653–68 e657.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81522031, 81772623, 81627807, and 81421003) and the National Center for Clinical Research of Digestive Diseases (2015BAI13B07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaichun Wu or Limin Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Jian Liu, Zhe Zhang, Xiaowei Li, Jie Chen, Guodong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, Z., Li, X. et al. Forkhead box C1 promotes colorectal cancer metastasis through transactivating ITGA7 and FGFR4 expression. Oncogene 37, 5477–5491 (2018). https://doi.org/10.1038/s41388-018-0355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0355-4

This article is cited by

Search

Quick links