Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide

Abstract

Radiotherapy significantly improves the therapeutic outcomes and survival of breast cancer patients. However, the acquired resistance to this therapeutic modality is a major clinical challenge. Here we show that ionizing irradiation (IR)-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the Tyr705 residue and the induction of reactive oxygen species (ROS) in wild-type and radioresistant MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) cell lines. Comparing with radiosensitive parental TNBC cells, significantly low levels of ROS and higher protein levels of phospho-STAT3 and Bcl-2 were observed in TNBC cells with acquired radioresistance. Moreover, knockdown of STAT3 by shRNA sensitized the TNBC cells to IR. Niclosamide, a potent inhibitor of STAT3, overcame the radioresistance in TNBC cells via inhibition of STAT3 and Bcl-2 and induction of ROS. In combination with radiation, niclosamide treatment resulted in significant increase of ROS generation and induction of apoptosis in parental and radioresistant TNBC cells in vitro and TNBC xenograft tumors in vivo. These findings demonstrate that activation of STAT3 and Bcl-2 and reduction of ROS contribute to the development of radioresistance in TNBC, and niclosamide acts as a potent radiosensitizer via inhibiting STAT3 and Bcl-2 and increasing ROS generation in TNBC cells and xenograft tumors. Our findings suggest that niclosamide in combination with irradiation may offer an effective alternative approach for restoring the sensitivity of radioresistant TNBC cells to IR for improved therapeutic efficacy and outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  Google Scholar 

  2. Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB, et al. Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2009;7:122–92.

    Article  CAS  Google Scholar 

  3. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  Google Scholar 

  4. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9 Suppl 2:S73–81.

    Article  CAS  PubMed  Google Scholar 

  5. Tinoco G, Warsch S, Gluck S, Avancha K, Montero AJ. Treating breast cancer in the 21st century: emerging biological therapies. J Cancer. 2013;4:117–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hernandez-Aya LF, Chavez-Macgregor M, Lei X, Meric-Bernstam F, Buchholz TA, Hsu L, et al. Nodal status and clinical outcomes in a large cohort of patients with triple-negative breast cancer. J Clin Oncol. 2011;29:2628–34.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turaga K, Acs G, Laronga C. Gene expression profiling in breast cancer. Cancer Control. 2010;17:177–82.

    Article  PubMed  Google Scholar 

  8. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.

    Article  CAS  PubMed  Google Scholar 

  9. Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–5.

    Article  CAS  PubMed  Google Scholar 

  10. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000;19:2474–88.

    Article  CAS  Google Scholar 

  11. Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. 2016;138:2570–8.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10:39–49.

    Article  CAS  PubMed  Google Scholar 

  13. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol. 1998;161:4652–60.

    CAS  PubMed  Google Scholar 

  14. Wang Y, Shen Y, Wang S, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett. 2018;415:117–28.

    Article  CAS  PubMed  Google Scholar 

  15. Kim JS, Kim HA, Seong MK, Seol H, Oh JS, Kim EK, et al. STAT3-survivin signaling mediates a poor response to radiotherapy in HER2-positive breast cancers. Oncotarget. 2016;7:7055–65.

    PubMed  PubMed Central  Google Scholar 

  16. Al-Hadiya BM. Niclosamide: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2005;32:67–96.

    Article  CAS  PubMed  Google Scholar 

  17. Ren X, Duan L, He Q, Zhang Z, Zhou Y, Wu D, et al. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med Chem Lett. 2010;1:454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Londono-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, et al. Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 2014;13:800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye T, Xiong Y, Yan Y, Xia Y, Song X, Liu L, et al. The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS ONE. 2014;9:e85887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang YC, Chao TK, Chang CC, Yo YT, Yu MH, Lai HC. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS ONE. 2013;8:e74538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res. 2006;12:11–19.

    Article  CAS  PubMed  Google Scholar 

  22. You S, Li R, Park D, Xie M, Sica GL, Cao Y, et al. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol Cancer Ther. 2014;13:606–16.

    Article  CAS  PubMed  Google Scholar 

  23. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109:1139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y, et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene. 2010;29:4826–37.

    Article  CAS  PubMed  Google Scholar 

  26. Desai S, Barai A, Bukhari AB, De A, Sen S. alpha-Actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathway. Biochim Biophys Acta. 2018;1865:196–208.

    Article  CAS  Google Scholar 

  27. Jin Y, Xu K, Chen Q, Wang B, Pan J, Huang S, et al. Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway. Exp Cell Res. 2018;362:362–9.

    Article  CAS  PubMed  Google Scholar 

  28. Shimura T, Noma N, Sano Y, Ochiai Y, Oikawa T, Fukumoto M, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol. 2014;112:302–7.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Yang W, Gao H, Jiang T, Gu B, Dong Q, et al. Nimotuzumab abrogates acquired radioresistance of KYSE-150R esophageal cancer cells by inhibiting EGFR signaling and cellular DNA repair. Onco Targets Ther. 2015;8:509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim EJ, Jeong JH, Bae S, Kang S, Kim CH, Lim YB. mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy. J Cell Biochem. 2013;114:1248–56.

    Article  CAS  PubMed  Google Scholar 

  31. Sato K, Azuma R, Imai T, Shimokawa T. Enhancement of mTOR signaling contributes to acquired X-ray and C-ion resistance in mouse squamous carcinoma cell line. Cancer Sci. 2017;108:2004–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dumont FJ, Bischoff P. Disrupting the mTOR signaling network as a potential strategy for the enhancement of cancer radiotherapy. Curr Cancer Drug Targets. 2012;12:899–924.

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Beitler JJ, Huang W, Chen G, Qian G, Magliocca K, et al. Honokiol radiosensitizes squamous cell carcinoma of the head and neck by downregulation of survivin. Clin Cancer Res. 2017;24:858–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:C1640–1652.

    Article  CAS  PubMed  Google Scholar 

  35. Liu T, Castro S, Brasier AR, Jamaluddin M, Garofalo RP, Casola A. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem. 2004;279:2461–9.

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Guo W, Wu S, Wang L, Wang J, Dai B, et al. Antitumor activity of a novel STAT3 inhibitor and redox modulator in non-small cell lung cancer cells. Biochem Pharmacol. 2012;83:1456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Ding R, Han Z, Ma Z, Wang Y. Targeting of cell cycle and let-7a/STAT3 pathway by niclosamide inhibits proliferation, migration and invasion in oral squamous cell carcinoma cells. Biomed Pharmacother. 2017;96:434–42.

    Article  CAS  PubMed  Google Scholar 

  38. Arend RC, Londono-Joshi AI, Gangrade A, Katre AA, Kurpad C, Li Y, et al. Niclosamide and its analogs are potent inhibitors of Wnt/beta-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget. 2016;7:86803–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marmol I, Virumbrales-Munoz M, Quero J, Sanchez-de-Diego C, Fernandez L, Ochoa I, et al. Alkynyl gold(I) complex triggers necroptosis via ROS generation in colorectal carcinoma cells. J Inorg Biochem. 2017;176:123–33.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan JX, Ding K, Wang CY. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer. 2012;31:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen W, Mook RA Jr., Premont RT, Wang J. Niclosamide: beyond an antihelminthic drug. Cell Signal. 2018;41:89–96.

    Article  CAS  PubMed  Google Scholar 

  43. Han TJ, Cho BJ, Choi EJ, Kim DH, Song SH, Paek SH, et al. Inhibition of STAT3 enhances the radiosensitizing effect of temozolomide in glioblastoma cells in vitro and in vivo. J Neurooncol. 2016;130:89–98.

    Article  CAS  PubMed  Google Scholar 

  44. Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–27.

    Article  CAS  PubMed  Google Scholar 

  45. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, et al. Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res. 2009;7:966–76.

    Article  CAS  PubMed  Google Scholar 

  46. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peter B,Bibi S, Eisenwort G, Wingelhofer B, Berger D, Stefanzl G, et al. Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia. 2018;32:1016–1022.

    Article  CAS  PubMed  Google Scholar 

  48. Yeh JE, Toniolo PA, Frank DA. JAK2-STAT5 signaling: a novel mechanism of resistance to targeted PI3K/mTOR inhibition. JAKSTAT. 2013;2:e24635.

    PubMed  PubMed Central  Google Scholar 

  49. Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood. 2011;117:3409–20.

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Zhang Y, Glass A, Zellweger T, Gehan E, Bubendorf L, et al. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res. 2005;11:5863–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ. The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res. 2005;65:10338–46.

    Article  CAS  PubMed  Google Scholar 

  52. Wang L, Yang Z, Xia Q, Chen H, Cai G, Wild C, Zhou J, Shen Q. Targeting STAT3 with novel small molecule inhibitors to sensitize breast cancer cells to radiation therapy. Cancer Res. 2015;75. In: Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium. San Antonio, TX. https://doi.org/10.1158/1538-7445.SABCS14-P6-12-04. Abstract P6-12-04.

    Google Scholar 

  53. Lu L, Dong J, Li D, Zhang J, Fan S. 3,3’-diindolylmethane mitigates total body irradiation-induced hematopoietic injury in mice. Free Radic Biol Med. 2016;99:463–71.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Wang S, Wu Y, Ren Y, Li Z, Yao X, et al. Suppression of the growth and invasion of human head and neck squamous cell carcinomas via regulating STAT3 signaling and the miR-21/beta-catenin axis with HJC0152. Mol Cancer Ther. 2017;16:578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fan S, Meng Q, Xu J, Jiao Y, Zhao L, Zhang X, et al. DIM (3,3’-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc Natl Acad Sci USA. 2013;110:18650–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81472495, 81572969, 81172127, 81703169, and 81730086); the Technology and Development and Research Projects for Research Institutes, Chinese Ministry of Science and Technology (2014EG150134); the Tianjin Science and Technology Support Plan Project (14ZCZDSY00001); the CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2016-I2M-1-017); in part by startup funds from The University of Texas M.D. Anderson Cancer Center (to QS); Prevent Cancer Foundation Holden Family Research Grant in Breast Cancer Prevention (to QS); and Seed Funding Research Program of Duncan Family Institute (to QS). We also thank Amy Ninetto, PhD, ELS, Department of Scientific Publications, The University of Texas MD Anderson Cancer Center, for her editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saijun Fan or Qiang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Dong, J., Wang, L. et al. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene 37, 5292–5304 (2018). https://doi.org/10.1038/s41388-018-0340-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0340-y

This article is cited by

Search

Quick links