SYT7 acts as a driver of hepatic metastasis formation of gastric cancer cells

Abstract

Liver metastasis remains a serious problem in the management of gastric cancer (GC). Our aims were to identify through transcriptome analysis a molecule that mediates hepatic metastasis in GC, and to evaluate its potential as a diagnostic marker and a therapeutic target. The effects of knocking out a relevant molecule using genome editing were evaluated in vitro experiments and in mouse xenograft models. Expression levels of candidate molecule in 300 pairs of gastric tissues were determined to assess whether differentially expressed genes predicted hepatic recurrence, metastasis, or both. Transcriptome data identified the overexpression of synaptotagmin VII (SYT7) in GC tissues with hepatic metastasis. Its expression in the GC cell lines was high, particularly in those that exhibited a differentiated phenotype, and positively correlated with the expression of SNAI1 and TGFB3, and inversely with RGS2. SYT7 knockout inhibited the proliferation of GC cells, indicated by increased apoptosis with activated caspase and loss of mitochondria membrane potential, G2/M cell-cycle arrest and attenuated cell migration, invasion, and adhesion. The tumorigenicity of SYT7-knockout cells was moderately reduced in a mouse model of subcutaneous metastasis in which the levels of BCL2 and HIF1A were decreased and was more strikingly attenuated in a model of hepatic metastasis. The SYT7 levels in the primary GC tissues were significantly associated with hepatic recurrence, metastasis, and adverse prognosis. SYT7 represents a tool for prediction and monitoring of hepatic metastasis from GC as well as being a promising therapeutic target.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA. 2017;67:7–30.

    PubMed  Google Scholar 

  3. 3.

    Kanda M, Shimizu D, Tanaka H, Tanaka C, Kobayashi D, Hayashi M, et al. Significance of SYT8 for the detection, prediction, and treatment of peritoneal metastasis from gastric cancer. Ann Surg. 2018;267:495–503.

    Article  PubMed  Google Scholar 

  4. 4.

    McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol & Hepatol. 2014;11:664–74.

    CAS  Article  Google Scholar 

  5. 5.

    Okines A, Verheij M, Allum W, Cunningham D, Cervantes A. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v50–54.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Goodman KA. Refining the role for adjuvant radiotherapy in gastric cancer: risk stratification is key. J Clin Oncol. 2015;33:3082–4.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Oki E, Tokunaga S, Emi Y, Kusumoto T, Yamamoto M, Fukuzawa K, et al. Surgical treatment of liver metastasis of gastric cancer: a retrospective multicenter cohort study (KSCC1302). Gastric Cancer. 2016;19:968–76.

    Article  PubMed  Google Scholar 

  8. 8.

    Kodera Y, Fujitani K, Fukushima N, Ito S, Muro K, Ohashi N, et al. Surgical resection of hepatic metastasis from gastric cancer: a review and new recommendation in the Japanese gastric cancer treatment guidelines. Gastric Cancer. 2014;17:206–12.

    Article  PubMed  Google Scholar 

  9. 9.

    Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Razzak M. Genetics: new molecular classification of gastric adenocarcinoma proposed by The Cancer Genome Atlas. Nat Rev Clin Oncol. 2014;11:499.

    Article  PubMed  Google Scholar 

  11. 11.

    Kanda M, Shimizu D, Tanaka H, Shibata M, Iwata N, Hayashi M, et al. Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer. Oncotarget. 2016;7:13667–79.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Resende C, Thiel A, Machado JC, Ristimaki A. Gastric cancer: basic aspects. Helicobacter. 2011;16(Suppl 1):38–44.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Schrag D, Weiser MR, Goodman KA, Gonen M, Hollywood E, Cercek A, et al. Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol. 2014;32:513–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Segovia M, Ales E, Montes MA, Bonifas I, Jemal I, Lindau M, et al. Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci USA. 2010;107:19032–7.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jackman SL, Turecek J, Belinsky JE, Regehr WG. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature. 2016;529:88–91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sorensen JB. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PloS ONE. 2014;9:e114033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Shih AM, Varghese L, Bittar A, Park SH, Chung JM, Shin OH. Dysregulation of norepinephrine release in the absence of functional synaptotagmin 7. J Cell Biochem. 2016;117:1446–53.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Liu H, Bai H, Hui E, Yang L, Evans CS, Wang Z, et al. Synaptotagmin 7 functions as a Ca2+ -sensor for synaptic vesicle replenishment. eLife. 2014;3:e01524.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, et al. Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+ -induced glucagon exocytosis in pancreas. J Physiol. 2009;587:1169–78.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Qi Y, Li Y, Zhang Y, Zhang L, Wang Z, Zhang X, et al. IFI6 inhibits apoptosis via mitochondrial-dependent pathway in dengue virus 2 infected vascular endothelial cells. PloS ONE. 2015;10:e0132743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012;31:110–23.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gao J, Zhu Y, Nilsson M, Sundfeldt K. TGF-beta isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int. 2014;14:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chen X, Li J, Hu L, Yang W, Lu L, Jin H, et al. The clinical significance of snail protein expression in gastric cancer: a meta-analysis. Human Genom. 2016;10(Suppl 2):22.

    Article  CAS  Google Scholar 

  26. 26.

    Wolff DW, Xie Y, Deng C, Gatalica Z, Yang M, Wang B, et al. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth. Int J Cancer. 2012;130:1521–31.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner BC, et al. Enhanced G2/M arrest, caspase related apoptosis and reduced E-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PloS ONE. 2015;10:e0141090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Liu XD, Fan RF, Zhang Y, Yang HZ, Fang ZG, Guan WB, et al. Down-regulation of telomerase activity and activation of caspase-3 are responsible for Tanshinone I-induced apoptosis in monocyte leukemia cells in vitro. Int J Mol Sci. 2010;11:2267–80.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Samykutty A, Shetty AV, Dakshinamoorthy G, Kalyanasundaram R, Zheng G, Chen A, et al. Vitamink2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. Evid Based Complement Altern Med. 2013;2013:287358.

    Article  Google Scholar 

  30. 30.

    Poli G, Guasti D, Rapizzi E, Fucci R, Canu L, Bandini A, et al. Morphofunctional effects of mitotane on mitochondria in human adrenocortical cancer cells. Endocr Relat Cancer. 2013;20:537–50.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cheng CH, Cheng YP, Chang IL, Chen HY, Wu CC, Hsieh CP. Dodecyl gallate induces apoptosis by upregulating the caspase-dependent apoptotic pathway and inhibiting the expression of anti-apoptotic Bcl-2 family proteins in human osteosarcoma cells. Mol Med Rep. 2016;13:1495–500.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Nie H, Rathbun G, Tucker H. Smyd1C mediates CD8 T cell death via regulation of Bcl2-mediated restriction of outer mitochondrial membrane integrity. J Cell Signal. 2017;2:163.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z, et al. HIF-1alpha and HIF-2alpha: siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PloS ONE. 2014;9:e88913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chiang AC, Massague J. Molecular basis of metastasis. New Engl J Med. 2008;359:2814–23.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29:4387–93.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379:315–21.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kanda M, Kodera Y, Sakamoto J. Updated evidence on adjuvant treatments for gastric cancer. Expert Rev Gastroenterol Hepatol. 2015;9:1–12.

    Article  CAS  Google Scholar 

  38. 38.

    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kanda M, Tanaka C, Kobayashi D, Tanaka H, Shimizu D, Shibata M, et al. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. International journal of cancer. J Int du Cancer. 2016;139:2290–8.

    CAS  Article  Google Scholar 

  40. 40.

    Kanda M, Nomoto S, Oya H, Shimizu D, Takami H, Hibino S, et al. Dihydropyrimidinase-like 3 facilitates malignant behavior of gastric cancer. J Exp Clin Cancer Res. 2014;33:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kanda M, Shimizu D, Fujii T, Sueoka S, Tanaka Y, Ezaka K, et al. Function and diagnostic value of Anosmin-1 in gastric cancer progression. Int J Cancer. 2016;138:721–30.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kanda M, Shimizu D, Fujii T, Tanaka H, Tanaka Y, Ezaka K, et al. Neurotrophin receptor-interacting melanoma antigen-encoding gene homolog is associated with malignant phenotype of gastric cancer. Ann Surg Oncol. 2016;23:532–9.

    Article  PubMed  Google Scholar 

  43. 43.

    Kanda M, Shimizu D, Fujii T, Tanaka H, Shibata M, Iwata N, et al. Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int J Oncol. 2016;49:1195–202.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Shimizu D, Kanda M, Tanaka H, Kobayashi D, Tanaka C, Hayashi M, et al. GPR155 serves as a predictive biomarker for hematogenous metastasis in patients with gastric cancer. Sci Rep. 2017;7:42089.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Miwa T, Kanda M, Tanaka H, Tanaka C, Kobayashi D, Umeda S, et al. FBXO50 enhances the malignant behavior of gastric cancer cells. Ann Surg Oncol. 2017;24:3771–9.

    Article  PubMed  Google Scholar 

  46. 46.

    Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. Oncotarget. 2016;7:49322–33.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kanda M, Nomoto S, Oya H, Takami H, Shimizu D, Hibino S, et al. The expression of melanoma-associated antigen D2 both in surgically resected and serum samples serves as clinically relevant biomarker of gastric cancer progression. Ann Surg Oncol. 2016;23(Suppl 2):214–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Encouragement of Young Scientists (B, 16K19889, Japan) and JSS Young Researcher Award 2014.

Author contribution

MK: data acquisition and analysis, interpretation of data, and drafting the manuscript. HT, DS, NH, MS, MH, and SY: acquisition and interpretation of data, and manuscript revision. TM, SU, CT, DK, and MF: material support and generation of data. YK: study concept and design, study supervision, interpretation of data, and revision of the manuscript. MK: had full access to all data and takes full responsibility for the veracity of the data and statistical analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mitsuro Kanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanda, M., Tanaka, H., Shimizu, D. et al. SYT7 acts as a driver of hepatic metastasis formation of gastric cancer cells. Oncogene 37, 5355–5366 (2018). https://doi.org/10.1038/s41388-018-0335-8

Download citation

Further reading