Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integration of Ca2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin

Abstract

Recent studies have suggested that the lipid-lowering agent simvastatin holds great promise as a cancer therapeutic; it inhibits the growth of multiple tumors, including triple-negative breast cancer. Doxorubicin- and simvastatin-induced cytotoxicity has been associated with the modulation of Ca2+ signaling, but the underlying mechanisms remain incompletely understood. Here we identify how Ca2+ signaling regulates the breast tumor cell response to doxorubicin and simvastatin. These two drugs inhibit cell survival while increasing apoptosis in two human breast cancer cell lines and five primary breast tumor specimens through the modulation of Ca2+ signaling. Signal transduction and functional studies revealed that both simvastatin and doxorubicin trigger persistent cytosolic Ca2+ release, thereby stimulating the proapoptotic BIM pathway and mitochondrial Ca2+ overload, which are responsible for metabolic dysfunction and apoptosis induction. Simvastatin and doxorubicin suppress the prosurvival ERK1/2 pathway in a Ca2+-independent and Ca2+-dependent manner, respectively. In addition, reduction of the Ca2+ signal by chelation or pharmacological inhibition significantly prevents drug-mediated anticancer signaling. Unexpectedly, a scratch-wound assay indicated that these two drugs induce rapid cell migration, while inhibiting cell invasion and colony formation in a Ca2+-dependent manner. Further, the in vivo data for MDA-MB-231 xenografts demonstrate that upon chelation of Ca2+, the ability of both drugs to reduce the tumor burden was significantly reduced via caspase-3 deactivation. Our results establish a calcium-based mechanism as crucial for executing the cell death process triggered by simvastatin and doxorubicin, and suggest that combining simvastatin with doxorubicin may be an effective regimen for the treatment of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-Borojeni AA, Sahebkar A, et al. The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther. 2017;24:189–93.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  CAS  Google Scholar 

  4. Tombal B, Denmeade SR, Gillis JM, Isaacs JT. A supramicromolar elevation of intracellular free calcium ([Ca(2+)](i)) is consistently required to induce the execution phase of apoptosis. Cell Death Differ. 2002;9:561–73.

    Article  PubMed  CAS  Google Scholar 

  5. Gajek A, Denel-Bobrowska M, Rogalska A, Bukowska B, Maszewski J, Marczak A. Early activation of apoptosis and caspase-independent cell death plays an important role in mediating the cytotoxic and genotoxic effects of WP 631 in ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16:8503–12.

    Article  PubMed  Google Scholar 

  6. Szwed M, Laroche-Clary A, Robert J, Jozwiak Z. Efficacy of doxorubicin-transferrin conjugate in apoptosis induction in human leukemia cells through reactive oxygen species generation. Cell Oncol (Dordr). 2016;39:107–18.

    Article  CAS  Google Scholar 

  7. Zhang HT, Wang WW, Ren LH, Zhao XX, Wang ZH, Zhuang DL, et al. The mTORC2/Akt/NFκB pathway-mediated activation of TRPC6 participates in adriamycin-induced podocyte apoptosis. Cell Physiol Biochem. 2016;40:1079–93.

    Article  PubMed  CAS  Google Scholar 

  8. Gao J, Chen T, Zhao D, Zheng J, Liu Z, Ginkgolide B. Exerts cardioprotective properties against doxorubicin-induced cardiotoxicity by regulating reactive oxygen species, Akt and calcium signaling pathways in vitro and in vivo. PLoS ONE. 2016;11:e0168219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Huang X, Xu Y, Liu Y, Xie H, Wang J, Wu Z. Extracellular Ca(2+) selectively enhances adriamycin-induced cell death in human hepatoma cells. Curr Cancer Drug Targets. 2015;15:481–92.

    Article  PubMed  CAS  Google Scholar 

  10. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, et al. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8:1913–24.

    PubMed  Google Scholar 

  11. Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64:102–46.

    Article  PubMed  CAS  Google Scholar 

  12. Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. J Pharm Pharmacol. 2017;69:613–24.

    Article  PubMed  CAS  Google Scholar 

  13. Kato S, Smalley S, Sadarangani A, Chen-Lin K, Oliva B, Brañes J, et al. Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase. J Cell Mol Med. 2010;14:1180–93.

    PubMed  CAS  Google Scholar 

  14. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66:8707–14.

    Article  PubMed  CAS  Google Scholar 

  15. Mortimer JE, Axelrod R, Zimbro K. Effect of statins on breast cancer incidence: findings from the Sentara Health Plan. Proc Am Soc Clin Oncol. 2003;22:93.

    Google Scholar 

  16. Wu QJ, Tu C, Li YY, Zhu J, Qian KQ, Li WJ, et al. Statin use and breast cancer survival and risk: a systematic review and meta-analysis. Oncotarget. 2015;6:42988–3004.

    PubMed  PubMed Central  Google Scholar 

  17. Katz MS. Therapy Insight: potential of statins for cancer chemoprevention and therapy. Nat Clin Pract Oncol. 2005;2:82–9.

    Article  PubMed  CAS  Google Scholar 

  18. Borahay MA, Kilic GS, Yallampalli C, Snyder RR, Hankins GD, Al-Hendy A, et al. Simvastatin potently induces calcium-dependent apoptosis of human leiomyoma cells. J Biol Chem. 2014;289:35075–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol. 2003;5:1041–3.

    Article  PubMed  CAS  Google Scholar 

  20. Parekh AB. Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov. 2010;9:399–410.

    Article  PubMed  CAS  Google Scholar 

  21. Tanwar J, Motiani RK. Role of SOCE architects STIM and Orai proteins in Cell Death. Cell Calcium. 2017;69:19–27. https://doi.org/10.1016/j.ceca.2017.06.002

    Article  PubMed  CAS  Google Scholar 

  22. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L. A role for Orai in TRPC-mediated Ca2+entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+entry. Proc Natl Acad Sci USA. 2009;106:3202–6.

    Article  PubMed  Google Scholar 

  23. Motiani RK, Abdullaev IF, Trebak M. A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem. 2010;285:19173–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gogebakan B, Bayraktar R, Suner A, Balakan O, Ulasli M, Izmirli M, et al. Do fasudil and Y-27632 affect the level of transient receptor potential (TRP) gene expressions in breast cancer cell lines? Tumour Biol. 2014;35:8033–41.

    Article  PubMed  CAS  Google Scholar 

  25. Leung YM, Kwan CY. Current perspectives in the pharmacological studies of store-operated Ca2+entry blockers. Jpn J Pharmacol. 1999;81:253–8.

    Article  PubMed  CAS  Google Scholar 

  26. Cheng H, Wang S, Feng R. STIM1 plays an important role in TGF-β-induced suppression of breast cancer cell proliferation. Oncotarget. 2016;7:16866–78.

    PubMed  PubMed Central  Google Scholar 

  27. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  29. Liu C, Ye Y, Zhou Q, Zhang R, Zhang H, Liu W, et al. Crosstalk between Ca2+signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR signaling pathway leading to neuronal apoptosis. Oncotarget. 2016;7:7534–49.

    PubMed  PubMed Central  Google Scholar 

  30. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 2007;129:1337–49.

    Article  PubMed  CAS  Google Scholar 

  31. David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Hyaluronan hydrogel: An appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater. 2008;4:256–63.

    Article  PubMed  CAS  Google Scholar 

  32. David L, Dulong V, Le Cerf D, Chauzy C, Norris V, Delpech B, et al. Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol. 2004;23:183–93.

    Article  PubMed  CAS  Google Scholar 

  33. Marchi S, Pinton P. Alterations of calcium homeostasis in cancer cells. Curr Opin Pharmacol. 2016;29:1–6.

    Article  PubMed  CAS  Google Scholar 

  34. Ouadid-Ahidouch H, Dhennin-Duthille I, Gautier M, Sevestre H, Ahidouch A. TRP channels: diagnostic markers and therapeutic targets for breast cancer? Trends Mol Med. 2013;19:117–24.

    Article  PubMed  CAS  Google Scholar 

  35. Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store-operated interactions between plasmalemmal STIM1 and TRPC1 proteins stimulate PLCβ1 to induce TRPC1 channel activation in vascular smooth muscle cells. J Physiol. 2017;595:1039–58.

    Article  PubMed  CAS  Google Scholar 

  36. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+ -dependent manner. Proc Natl Acad Sci USA. 2015;112:1779–84.

    Article  PubMed  CAS  Google Scholar 

  37. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang S, Chen Y, Wu X, Gao H, Ma R, Jiang C, et al. The pivotal role of Ca2+homeostasis in PBDE-47-induced neuronal apoptosis. Mol Neurobiol. 2016;53:7078–88.

    Article  PubMed  CAS  Google Scholar 

  39. Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium signaling during meiotic cell cycle regulation and apoptosis in mammalian oocytes. J Cell Physiol. 2017;232:976–81.

    Article  PubMed  CAS  Google Scholar 

  40. Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 2015;309:C457–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 2009;15:124–34.

    Article  PubMed  CAS  Google Scholar 

  42. Li Y, Liu H, Huang YY, Pu LJ, Zhang XD, Jiang CC, et al. Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase. Int J Mol Med. 2013;31:1234–42.

    Article  PubMed  CAS  Google Scholar 

  43. Einbond LS, Wu HA, Sandu C, Ford M, Mighty J, Antonetti V, et al. Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells. Fitoterapia. 2016;109:146–54.

    Article  PubMed  CAS  Google Scholar 

  44. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  PubMed  CAS  Google Scholar 

  45. Lavik AR, Zhong F, Chang MJ, Greenberg E, Choudhary Y, Smith MR, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388–402.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene. 2003;22:6785–93.

    Article  PubMed  CAS  Google Scholar 

  47. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA. 2004;101:15313–17.

    Article  PubMed  CAS  Google Scholar 

  48. Rambal AA, Panaguiton ZL, Kramer L, Grant S, Harada H. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia. 2009;23:1744–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Buranrat B, Suwannaloet W, Naowaboot J. Simvastatin potentiates doxorubicin activity against MCF-7 breast cancer cells. Oncol Lett. 2017;14:6243–50.

    PubMed  PubMed Central  Google Scholar 

  50. Simon T, Coquerel B, Petit A, Kassim Y, Demange E, Le Cerf D, et al. Direct effect of bevacizumab on glioblastoma cell lines in vitro. Neuromolecular Med. 2014;16:752–71.

    Article  PubMed  CAS  Google Scholar 

  51. Abdoul-Azize S, Dubus I, Vannier JP. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation. Oncotarget. 2017;8:27339–52.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the French Ministry of Higher Education and Research, and the Association Vie et Espoir. We thank members of the LIONS CLUB Les Andelys association for their support with equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souleymane Abdoul-Azize.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdoul-Azize, S., Buquet, C., Li, H. et al. Integration of Ca2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin. Oncogene 37, 4979–4993 (2018). https://doi.org/10.1038/s41388-018-0329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0329-6

This article is cited by

Search

Quick links