Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new method of identifying glioblastoma subtypes and creation of corresponding animal models

Abstract

Glioblastoma (GBM) accounts for up to 50% of brain parenchymal tumors. It is the most malignant type of brain cancer with very poor survival and limited remedies. Cancer subtyping is important for cancer research and therapy. Here, we report a new subtyping method for GBM based on the genetic alterations of CDKN2A and TP53 genes. CDKN2A and TP53 are the most frequently mutated genes with mutation rates of 60 and 30%, respectively. We found that patients with deletion of CDKN2A possess worse survival than those with TP53 mutation. Interestingly, survival of patients with both TP53 mutation and CDKN2A deletion is no worse than for those with only one of these genetic alterations, but similar to those with TP53 mutation alone. Next, we investigated differences in the gene expression profile between TP53 and CDKN2A samples. Consistent with the survival data, the samples with both TP53 mutation and CDKN2A deletion showed a gene expression profile similar to those samples with TP53 mutation alone. Finally, we found that activation of RAS pathway plus Cdkn2a/b silencing can induce GBM, in a similar way to tumor induction by RAS activation plus TP53 silencing. In conclusion, we show that the genetic alterations of CDKN2A and TP53 may be used to stratify GBM, and the new animal models matching this stratification method were generated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  2. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.

    PubMed  CAS  Google Scholar 

  3. Arvold ND, Reardon DA. Treatment options and outcomes for glioblastoma in the elderly patient. Clin Interv Aging. 2014;9:357–67.

    PubMed  PubMed Central  Google Scholar 

  4. Helseth R, Helseth E, Johannesen TB, Langberg CW, Lote K, Ronning P, et al. Overall survival, prognostic factors, and repeated surgery in a consecutive series of 516 patients with glioblastoma multiforme. Acta Neurol Scand. 2010;122:159–67.

    Article  PubMed  CAS  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  6. Mischel PS, Choe G, Horvath S, Cloughesy TF, Smith B, Crosby K, et al. Analysis of the PI3K signaling pathway in glioblastoma patients in vivo. J Neuropathol Exp Neurol. 2003;62:542.

    Google Scholar 

  7. Bhowmick DA, Zhuang ZP, Wait SD, Weil RJ. A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res. 2004;64:1220–3.

    Article  PubMed  CAS  Google Scholar 

  8. Dong SM, Nutt CL, Betensky RA, Stemmer-Rachamimov AO, Denko NC, Ligon KL, et al. Histology-based expression profiling yields novel prognostic markers in human glioblastoma. J Neuropath Exp Neur. 2005;64:948–55.

    Article  PubMed  Google Scholar 

  9. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37.

    Article  PubMed  CAS  Google Scholar 

  10. Costa BM, Smith JS, Chen Y, Chen J, Phillips HS, Aldape KD, et al. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res. 2010;70:453–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  PubMed  CAS  Google Scholar 

  13. Vogazianou AP, Chan R, Backlund LM, Pearson DM, Liu L, Langford CF, et al. Distinct patterns of 1p and 19q alterations identify subtypes of human gliomas that have different prognoses. Neuro Oncol. 2010;12:664–78.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boots-Sprenger SHE, Sijben A, Rijntjes J, Tops BBJ, Idema AJ, Rivera AL, et al. Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution. Mod Pathol. 2013;26:922–9.

    Article  PubMed  CAS  Google Scholar 

  15. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164:550–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529:110–4.

    Article  PubMed  CAS  Google Scholar 

  19. Popova SN, Bergqvist M, Dimberg A, Edqvist PH, Ekman S, Hesselager G, et al. Subtyping of gliomas of various WHO grades by the application of immunohistochemistry. Histopathology. 2014;64:365–79.

    Article  PubMed  Google Scholar 

  20. Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell. 2014;26:288–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (p16(INK4A), MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene. 1996;13:1065–72.

    PubMed  CAS  Google Scholar 

  22. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol. 2015;33:1015–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma (Vol 155, pg 462, 2013). Cell. 2014;157:753.

    Article  CAS  Google Scholar 

  24. Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DTW, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009;11:341–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Stancheva G, Goranova T, Laleva M, Kamenova M, Mitkova A, Velinov N, et al. IDH1/IDH2 but not TP53 mutations predict prognosis in Bulgarian glioblastoma patients. Biomed Res Int. 2014;2014:654727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  27. Niola F, Zhao XD, Singh D, Sullivan R, Castano A, Verrico A, et al. Mesenchymal high-grade glioma is maintained by the ID-RAP-1 axis. J Clin Invest. 2013;123:405–17.

    Article  PubMed  CAS  Google Scholar 

  28. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338:1080–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  30. Kato H, Kato S, Kumabe T, Sonoda Y, Yoshimoto T, Kato S, et al. Functional evaluation of p53 and PTEN gene mutations in gliomas. Clin Cancer Res. 2000;6:3937–43.

    PubMed  CAS  Google Scholar 

  31. Wiedemeyer R, Brennan C, Heffernan TP, Xiao YH, Mahoney J, Protopopov A, et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell. 2008;13:355–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell. 2003;12:889–901.

    Article  PubMed  CAS  Google Scholar 

  33. Gao JJ, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  35. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

  36. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn. 2003;52:91–118.

    Article  Google Scholar 

  37. Liu YC, Li ZM, Xiong H, Gao XD, Wu JJ, Wu S. Understanding and enhancement of internal clustering validation measures. IEEE Trans Cybern. 2013;43:982–94.

    Article  PubMed  Google Scholar 

  38. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif. 2014;31:274–95.

    Article  Google Scholar 

  39. Lee JC, Lyons PA, McKinney EF, Sowerby JM, Carr EJ, Bredin F, et al. Gene expression profiling of CD8(+) T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest. 2011;121:4170–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

  41. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan–Meier estimate. Int J Ayurveda Res. 2010;1:274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Serrano M, Lee HW, Chin L, CordonCardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85:27–37.

    Article  PubMed  CAS  Google Scholar 

  43. Gallardo T, Shirley L, John GB, Castrillon DH. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis. 2007;45:413–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, et al. Development of a novel mouse glioma model using lentiviral vectors. Nat Med. 2009;15:110–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R. Comparison of lentiviral vector titration methods. BMC Biotechnol. 2006;6:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rothschild G, Zhao X, Iavarone A, Lasorella A. E Proteins and Id2 converge on p57Kip2 to regulate cell cycle in neural cells. Mol Cell Biol. 2006;26:4351–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tu Q, Hao J, Zhou X, Yan L, Dai H, Sun B, et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018;37:128–38.

    Article  PubMed  CAS  Google Scholar 

  48. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    Article  CAS  Google Scholar 

  49. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Langmead B. Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform. 2010;Chapter 11:Unit 11.17.

    Google Scholar 

  51. Qian WF, Liao BY, Chang AYF, Zhang JZ. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet. 2010;26:425–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dong Yang and Qiu Tu for the useful advice. We also thank Yujie Xia for technical assistance with the histological analysis. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 01040403), the National Natural Science Foundation of China (NSFC, 81171960), the Top Talents Program of Yunnan Province China (2012HA014) to XZ, and Yunnan Applied Basic Research Projects (2013FA020).

Author contributions:

SA, GL, W-XL, YG, SD, and JZ performed bioinformatic analysis. XZ, ZD, and HY created the mouse glioblastoma model and performed the analysis. JH, IA, and XZ designed the experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfei Huang, Antonio Iavarone or Xudong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Xia Zhou, Gonghua Li, Sanqi An.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Li, G., An, S. et al. A new method of identifying glioblastoma subtypes and creation of corresponding animal models. Oncogene 37, 4781–4791 (2018). https://doi.org/10.1038/s41388-018-0305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0305-1

This article is cited by

Search

Quick links