Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer

A Correction to this article was published on 16 May 2023

This article has been updated

Abstract

Intrinsic and acquired resistance to anti-EGFR antibody therapy, frequently mediated by a mutant or amplified KRAS oncogene, is a significant challenge in the treatment of colorectal cancer (CRC). However, the mechanism of KRAS-mediated therapeutic resistance is not well understood. In this study, we demonstrate that clinically used anti-EGFR antibodies, including cetuximab and panitumumab, induce killing of sensitive CRC cells through p73-dependent transcriptional activation of the pro-apoptotic Bcl-2 family protein PUMA. PUMA induction and p73 activation are abrogated in CRC cells with acquired resistance to anti-EGFR antibodies due to KRAS alterations. Inhibition of aurora kinases preferentially kills mutant KRAS CRC cells and overcomes KRAS-mediated resistance to anti-EGFR antibodies in vitro and in vivo by restoring PUMA induction. Our results suggest that PUMA plays a critical role in meditating the sensitivity of CRC cells to anti-EGFR antibodies, and that restoration of PUMA-mediated apoptosis is a promising approach to improve the efficacy of EGFR-targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  2. Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer. Clin Colorectal Cancer. 2012;11:1–13.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang L, Yu J. Role of apoptosis in colon cancer biology, therapy, and prevention. Curr Colorectal Cancer Rep. 2013;9:331–40.

    Article  Google Scholar 

  4. Misale S, Bozic I, Tong J, Peraza-Penton A, Lallo A, Baldi F, et al. Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nat Commun. 2015;6:8305.

    Article  PubMed  CAS  Google Scholar 

  5. Bhola PD, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol Cell. 2016;61:695–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28:1254–61.

    Article  PubMed  CAS  Google Scholar 

  7. Banck MS, Grothey A. Biomarkers of resistance to epidermal growth factor receptor monoclonal antibodies in patients with metastatic colorectal cancer. Clin Cancer Res. 2009;15:7492–501.

    Article  PubMed  CAS  Google Scholar 

  8. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Martini M, Vecchione L, Siena S, Tejpar S, Bardelli A. Targeted therapies: how personal should we go? Nat Rev Clin Oncol. 2012;9:87–97.

    Article  CAS  Google Scholar 

  11. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Diaz LA Jr., Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Misale S, Arena S, Lamba S, Siravegna G, Lallo A, Hobor S, et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med. 2014;6:224ra26.

    Article  PubMed  CAS  Google Scholar 

  15. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27(Suppl 1):S71–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat Commun. 2015;6:7002.

    Article  PubMed  CAS  Google Scholar 

  17. Conforti F, Sayan AE, Sreekumar R, Sayan BS. Regulation of p73 activity by post-translational modifications. Cell Death Dis. 2012;3:e285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Knickelbein K, Zhang L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis. 2015;2:4–12.

    Article  PubMed  CAS  Google Scholar 

  19. Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL, et al. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene. 2009;18:2348–57.

    Article  CAS  Google Scholar 

  20. Sun J, Knickelbein K, He K, Chen D, Dudgeon C, Shu Y, et al. Aurora kinase inhibition induces PUMA via NF-kappaB to kill colon cancer cells. Mol Cancer Ther. 2014;13:1298–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3beta and NF-kappaB to suppress tumor cell growth. Oncogene. 2012;31:4848–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  PubMed  CAS  Google Scholar 

  23. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  PubMed  CAS  Google Scholar 

  24. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325:1555–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med. 2005;352:476–87.

    Article  PubMed  CAS  Google Scholar 

  26. Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB, et al. Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007;67:8240–7.

    Article  PubMed  CAS  Google Scholar 

  27. Kasper S, Breitenbuecher F, Reis H, Brandau S, Worm K, Kohler J, et al. Oncogenic RAS simultaneously protects against anti-EGFR antibody-dependent cellular cytotoxicity and EGFR signaling blockade. Oncogene. 2013;32:2873–81.

    Article  PubMed  CAS  Google Scholar 

  28. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 2001;276:15164–73.

    Article  PubMed  CAS  Google Scholar 

  29. Tsai KK, Yuan ZM. c-Abl stabilizes p73 by a phosphorylation-augmented interaction. Cancer Res. 2003;63:3418–24.

    PubMed  CAS  Google Scholar 

  30. Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007;4:1681–89. discussion 90

    Article  PubMed  CAS  Google Scholar 

  31. Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL. Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest. 2008;118:3651–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell. 2013;23:121–8.

    Article  PubMed  CAS  Google Scholar 

  33. Hata AN, Yeo A, Faber AC, Lifshits E, Chen Z, Cheng KA, et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 2014;74:3146–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Giam M, Huang DC, Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene. 2008;27(Suppl 1):S128–36.

    Article  PubMed  CAS  Google Scholar 

  35. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  CAS  Google Scholar 

  36. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21:795–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee HJ, Lan L, Peng G, Chang WC, Hsu MC, Wang YN, et al. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res. 2015;25:225–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  40. Del Poeta G, Postorino M, Pupo L, Del Principe MI, Dal Bo M, Bittolo T. Venetoclax: Bcl-2 inhibition for the treatment of chronic lymphocytic leukemia. Drugs Today. 2016;52:249–60.

    Google Scholar 

  41. Brown MF, Leibowitz BJ, Chen D, He K, Zou F, Sobol RW, et al. Loss of caspase-3 sensitizes colon cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death Dis. 2015;6:e1729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen D, Ming L, Zou F, Peng Y, Van Houten B, Yu J, et al. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget. 2014;5:8107–22.

    PubMed  PubMed Central  Google Scholar 

  43. Ming L, Wang P, Bank A, Yu J, Zhang L. PUMA dissociates Bax and BCL-XL to induce apoptosis in colon cancer cells. J Biol Chem. 2006;281:16034–42.

    Article  PubMed  CAS  Google Scholar 

  44. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA. 2003;100:1931–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank our lab members for critical reading. This work is supported by U.S. National Institute of Health grants (R01CA106348, R01CA172136, R01CA203028, and R01CA217141 to LZ; U19AI068021 and R01CA215481 to JY). KK was supported by a fellowship from the Cotswold Foundation and the Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine. This project used the UPMC Hillman Cancer Center shared facilities that were supported in part by award P30CA047904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knickelbein, K., Tong, J., Chen, D. et al. Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene 37, 4599–4610 (2018). https://doi.org/10.1038/s41388-018-0289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0289-x

This article is cited by

Search

Quick links