Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation

Abstract

Breast cancer is a leading cause of cancer-related death in women. Small open reading frame (sORF)-encoded proteins or microproteins constitute a new class of molecules often transcribed from presumed long non-coding RNA transcripts (lncRNAs). The translation of some of these sORFs has been confirmed, but their cellular function and importance remains largely unknown. Here, we report the identification and characterization of a novel microprotein of 10 kDa, which we named Cancer-Associated Small Integral Membrane Open reading frame 1 (CASIMO1). CASIMO1 RNA is overexpressed predominantly in hormone receptor-positive breast tumors. Its knockdown leads to decreased proliferation in multiple breast cancer cell lines. Its loss disturbs the organization of the actin cytoskeleton, leads to inhibition of cell motility, and causes a G0/G1 cell cycle arrest. The proliferation phenotype upon overexpression is observed only with CASIMO1 protein expression, but not with a non-translatable mutant attributing the effects to the sORF-derived protein rather than a lncRNA function. CASIMO1 microprotein interacts with squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis and a known oncogene in breast cancer. Overexpression of CASIMO1 leads to SQLE protein accumulation without affecting its RNA levels and increased lipid droplet clustering, while knockdown of CASIMO1 decreased SQLE protein abundance and ERK phosphorylation downstream of SQLE. Importantly, SQLE knockdown mimicked the CASIMO1 knockdown phenotype and in turn SQLE overexpression fully rescued the effect of CASIMO1 knockdown. These findings establish CASIMO1 as the first functional microprotein that plays a role in carcinogenesis and is implicated in the cell lipid homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386.

    Article  PubMed  CAS  Google Scholar 

  2. Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity. Oncogene. 2015;34:5309–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  4. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol. 2013;9:59–64.

    Article  PubMed  CAS  Google Scholar 

  5. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014;33:981–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MA, Brocard M, et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. Elife. 2014;3:e03528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K, Calviello L, et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 2015;16:179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chu Q, Rathore A, Diedrich JK, Donaldson CJ, Yates JR 3rd, Saghatelian A. Identification of microprotein-protein interactions via APEX tagging. Biochemistry. 2017;56:3299–306.

    Article  PubMed  CAS  Google Scholar 

  9. D’Lima NG, Ma J, Winkler L, Chu Q, Loh KH, Corpuz EO, et al. A human microprotein that interacts with the mRNA decapping complex. Nat Chem Biol. 2017;13:174–80.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Q, Vashisht AA, O’Rourke J, Corbel SY, Moran R, Romero A, et al. The microprotein Minion controls cell fusion and muscle formation. Nat Commun. 2017;8:15664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Basrai MA, Hieter P, Boeke JD. Small open reading frames: beautiful needles in the haystack. Genome Res. 1997;7:768–71.

    Article  PubMed  CAS  Google Scholar 

  12. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet. 2014;15:193–204.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kondo T, Plaza S, Zanet J, Benrabah E, Valenti P, Hashimoto Y, et al. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science. 2010;329:336–9.

    Article  PubMed  CAS  Google Scholar 

  16. Magny EG, Pueyo JI, Pearl FM, Cespedes MA, Niven JE, Bishop SA, et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science. 2013;341:1116–20.

    Article  PubMed  CAS  Google Scholar 

  17. Kastenmayer JP, Ni L, Chu A, Kitchen LE, Au WC, Yang H, et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 2006;16:365–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA. 2007;104:20454–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lluch-Senar M, Delgado J, Chen WH, Llorens-Rico V, O’Reilly FJ, Wodke JA, et al. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol Syst Biol. 2015;11:780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA. 2001;98:6336–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Slavoff SA, Heo J, Budnik BA, Hanakahi LA, Saghatelian A. A human short open reading frame (sORF)-encoded polypeptide that stimulates DNA end joining. J Biol Chem. 2014;289:10950–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dinger ME, Pang KC, Mercer TR, Mattick JS. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol. 2008;4:e1000176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  26. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, et al. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 2015;75:3728–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518–22.

    Article  PubMed  CAS  Google Scholar 

  28. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009;16:45–58.

    Article  PubMed  CAS  Google Scholar 

  29. Bhattacharyya S, Tobacman JK. Arylsulfatase B regulates colonic epithelial cell migration by effects on MMP9 expression and RhoA activation. Clin Exp Metastasis. 2009;26:535–45.

    Article  PubMed  CAS  Google Scholar 

  30. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.

    Article  PubMed  CAS  Google Scholar 

  31. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;8:1365–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011;147:789–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J, et al. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res. 2014;13:1757–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mestdagh P, Lefever S, Pattyn F, Ridzon D, Fredlund E, Fieuw A, et al. The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res. 2011;39:e136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5:605–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hannus M, Beitzinger M, Engelmann JC, Weickert MT, Spang R, Hannus S, et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 2014;42:8049–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 2011;21:1944–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Staudt AC, Wenkel S. Regulation of protein function by ‘microProteins’. EMBO Rep. 2011;12:35–42.

    Article  PubMed  CAS  Google Scholar 

  39. Couso JP, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol. 2017;18:575–89.

    Article  PubMed  CAS  Google Scholar 

  40. Cabrera-Quio LE, Herberg S, Pauli A. Decoding sORF translation—from small proteins to gene regulation. RNA Biol. 2016;13:1051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thurnher M, Nussbaumer O, Gruenbacher G. Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin Cancer Res. 2012;18:3524–31.

    Article  PubMed  CAS  Google Scholar 

  42. Gill S, Stevenson J, Kristiana I, Brown AJ. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab. 2011;13:260–73.

    Article  PubMed  CAS  Google Scholar 

  43. Brown DN, Caffa I, Cirmena G, Piras D, Garuti A, Gallo M, et al. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci Rep. 2016;6:19435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sui Z, Zhou J, Cheng Z, Lu P. Squalene epoxidase (SQLE) promotes the growth and migration of the hepatocellular carcinoma cells. Tumour Biol: J Int Soc Oncodev Biol Med. 2015;36:6173–9.

    Article  CAS  Google Scholar 

  45. Zhang HY, Li HM, Yu Z, Yu XY, Guo K. Expression and significance of squalene epoxidase in squamous lung cancerous tissues and pericarcinoma tissues. Thorac Cancer. 2014;5:275–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Helms MW, Kemming D, Pospisil H, Vogt U, Buerger H, Korsching E, et al. Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+breast cancer and indicates poor clinical outcome in stage I and II disease. Br J Cancer. 2008;99:774–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 2016;18:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126:2–7.

    Article  PubMed  Google Scholar 

  49. Ryder NS, Dupont MC. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J. 1985;230:765–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ta MT, Kapterian TS, Fei W, Du X, Brown AJ, Dawes IW, et al. Accumulation of squalene is associated with the clustering of lipid droplets. FEBS J. 2012;279:4231–44.

    Article  PubMed  CAS  Google Scholar 

  51. Stevenson J, Luu W, Kristiana I, Brown AJ. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids. Biochem J. 2014;461:435–42.

    Article  PubMed  CAS  Google Scholar 

  52. Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife. 2015;4:e08890.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Housman G, Ulitsky I. Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim Biophys Acta. 2016;1859:31–40.

    Article  PubMed  CAS  Google Scholar 

  54. Sleator RD. An overview of the current status of eukaryote gene prediction strategies. Gene. 2010;461:1–4.

    Article  PubMed  CAS  Google Scholar 

  55. Saghatelian A, Couso JP. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol. 2015;11:909–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Couso JP. Finding smORFs: getting closer. Genome Biol. 2015;16:189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Brar GA, Weissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol. 2015;16:651–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hall A, Nobes CD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond Ser B Biol Sci. 2000;355:965–70.

    Article  CAS  Google Scholar 

  59. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    Article  PubMed  CAS  Google Scholar 

  60. Lambrechts A, Van Troys M, Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol. 2004;36:1890–909.

    Article  PubMed  CAS  Google Scholar 

  61. Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007;9:1110–21.

    Article  PubMed  CAS  Google Scholar 

  62. Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11:237–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gachet Y, Tournier S, Millar JB, Hyams JS. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature. 2001;412:352–5.

    Article  PubMed  CAS  Google Scholar 

  64. Lee K, Song K. Actin dysfunction activates ERK1/2 and delays entry into mitosis in mammalian cells. Cell Cycle. 2007;6:1487–95.

    PubMed  CAS  Google Scholar 

  65. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016;16:718–31.

    Article  PubMed  CAS  Google Scholar 

  66. Inder KL, Zheng YZ, Davis MJ, Moon H, Loo D, Nguyen H, et al. Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Mol Cell Proteom. 2012;11:M111 012245.

    Article  CAS  Google Scholar 

  67. Miettinen TP, Bjorklund M. Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy. Cell Rep. 2015;13:2610–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.

    Article  PubMed  CAS  Google Scholar 

  69. Schmid I, Sakamoto KM (2001). Analysis of DNA content and green fluorescent protein expression. Curr Protoc Cytom. Chapter 7: Unit 7.16.

Download references

Acknowledgements

We thank Drs. K. Boulay and A. Roth for helpful discussions and suggestions and for critical reading of the manuscript, S. Wiemann for helpful discussions, L. Chatel-Chaix (University of Heidelberg) and R. Pepperkok (EMBL Heidelberg) for antibodies and suggestions, V. Benes, T. Ivacevic, and S. Schmidt (EMBL Heidelberg, Genome Core Facility) for support with microarray performance and the DKFZ Light Microscopy and Flow Cytometry Core Facilities and the ZMBH Flow Cytometry & FACS Core Facility (University of Heidelberg) for technical support. Research in the Diederichs lab is supported by the German Research Foundation (DFG Di 1421/7-1) and the RNA@DKFZ Cross Program Topic. This work is part of the Ph.D. thesis of M.P.-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Diederichs.

Ethics declarations

Conflict of interest

S.D. is a co-owner of siTOOLs Biotech GmbH, Martinsried, Germany. The remaining authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polycarpou-Schwarz, M., Groß, M., Mestdagh, P. et al. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene 37, 4750–4768 (2018). https://doi.org/10.1038/s41388-018-0281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0281-5

This article is cited by

Search

Quick links