Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression

Abstract

Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and involved in many diseases, including cancer. CFIm25, a subunit of the cleavage factor I encoded by NUDT21, is required for 3′RNA cleavage and polyadenylation. Although it has been recently reported to be involved in glioblastoma tumor suppression, its roles and the underlying functional mechanism remain unclear in other types of cancer. In this study, we characterized NUDT21 in hepatocellular carcinoma (HCC). Reduced expression of NUDT21 was observed in HCC tissue compared to adjacent non-tumorous compartment. HCC patients with lower NUDT21 expression have shorter overall and disease-free survival times than those with higher NUDT21 expression after surgery. Knockdown of NUDT21 promotes HCC cell proliferation, metastasis, and tumorigenesis, whereas forced expression of NUDT21 exhibits the opposite effects. We then performed global APA site profiling analysis in HCC cells and identified considerable number of genes with shortened 3′UTRs upon the modulation of NUDT21 expression. In particular, we further characterized the NUDT21-regulated genes PSMB2 and CXXC5. We found NUDT21 knockdown increases usage of the proximal polyadenylation site in the PSMB2 and CXXC5 3′ UTRs, resulting in marked increase in the expression of PSMB2 and CXXC5. Moreover, knockdown of PSMB2 or CXXC5 suppresses HCC cell proliferation and invasion. Taken together, our study demonstrated that NUDT21 inhibits HCC proliferation, metastasis and tumorigenesis, at least in part, by suppressing PSMB2 and CXXC5, and thereby provided a new insight into understanding the connection of HCC suppression and APA machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 2011;43:853–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18:18–30.

    Article  PubMed  CAS  Google Scholar 

  3. Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet. 2013;14:496–506.

    Article  PubMed  CAS  Google Scholar 

  4. Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science. 2008;320:1643–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, et al. Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res. 2012;18:5256–66.

    Article  PubMed  CAS  Google Scholar 

  7. Erson-Bensan AE, Can T. Alternative polyadenylation: another foe in cancer. Mol Cancer Res. 2016;14:507–17.

    Article  PubMed  CAS  Google Scholar 

  8. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, et al. Global changes in processing of mRNA 3’ untranslated regions characterize clinically distinct cancer subtypes. Cancer Res. 2009;69:9422–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, et al. Differential genome-wide profiling of tandem 3’ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21:741–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3’-UTR landscape across seven tumour types. Nat Commun. 2014;5:5274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lembo A, Di Cunto F, Provero P. Shortening of 3’UTRs correlates with poor prognosis in breast and lung cancer. PLoS One. 2012;7:e31129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Miles WO, Lembo A, Volorio A, Brachtel E, Tian B, Sgroi D, et al. Alternative polyadenylation in triple-negative breast tumors allows NRAS and c-JUN to bypass PUMILIO posttranscriptional regulation. Cancer Res. 2016;76:7231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, et al. Molecular architecture of the human pre-mRNA 3’ processing complex. Mol Cell. 2009;33:365–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. 2014;510:412–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Martin G, Gruber AR, Keller W, Zavolan M. Genome-wide analysis of pre-mRNA 3’ end processing reveals a decisive role of human cleavage factor I in the regulation of 3’ UTR length. Cell Rep. 2012;1:753–63.

    Article  PubMed  CAS  Google Scholar 

  16. Brown KM, Gilmartin GM. A mechanism for the regulation of pre-mRNA 3’ processing by human cleavage factor Im. Mol Cell. 2003;12:1467–76.

    Article  PubMed  CAS  Google Scholar 

  17. Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev. 2005;19:1315–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublie S. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res. 2008;36:3474–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang Q, Gilmartin GM, Doublie S. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3’ processing. Proc Natl Acad Sci USA. 2010;107:10062–7.

    Article  PubMed  Google Scholar 

  20. Gennarino VA, Alcott CE, Chen CA, Chaudhury A, Gillentine MA, Rosenfeld JA, et al. NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. Elife 2015;4;e10782.

  21. Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, et al. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum Mol Genet. 2015;24:3410–7.

    Article  PubMed  CAS  Google Scholar 

  22. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  23. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018.

    Article  PubMed  Google Scholar 

  24. Llovet JM. Liver cancer: time to evolve trial design after everolimus failure. Nat Rev Clin Oncol. 2014;11:506–7.

    Article  PubMed  CAS  Google Scholar 

  25. Collavoli A, Comelli L, Cervelli T, Galli A. The over-expression of the beta2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells. J Biomed Biotechnol. 2011;2011:757960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Knappskog S, Myklebust LM, Busch C, Aloysius T, Varhaug JE, Lonning PE, et al. RINF (CXXC5) is overexpressed in solid tumors and is an unfavorable prognostic factor in breast cancer. Ann Oncol. 2011;22:2208–15.

    Article  PubMed  CAS  Google Scholar 

  27. Tan S, Ding K, Li R, Zhang W, Li G, Kong X, et al. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Res. 2014;16:R40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Scientific Programme of China (2016YFC1302305), The National Natural Science Foundation of China (81672609, 31671299, 81502282, 81472494,) and the Shenzhen Development and Reform Commission Subject Construction Project [2017] 1434. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Zhao, Jielin Sun or Tao Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Li, H., Zhang, W. et al. NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene 37, 4887–4900 (2018). https://doi.org/10.1038/s41388-018-0280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0280-6

This article is cited by

Search

Quick links