Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACTN4 regulates the stability of RIPK1 in melanoma

Abstract

The actin crosslinking protein α-actinin-4 (ACTN4) is emerging as an important contributor to the pathogenesis of cancer. This has largely been attributed to its role in regulating cytoskeleton organization and its involvement in transcriptional regulation of gene expression. Here we report a novel function of ACTN4 as a scaffold necessary for stabilization of receptor-interacting protein kinase 1 (RIPK1) that we have recently found to be an oncogenic driver in melanoma. ACTN4 bound to RIPK1 and cellular inhibitor of apoptosis protein 1 (cIAP1) with its actin-binding domain at the N-terminus and the CaM-like domain at the C-terminus, respectively. This facilitated the physical association between RIPK1 and cIAP1 and was critical for stabilization of RIPK1 that in turn activated NF-κB. Functional investigations showed that silencing of ACTN4 suppressed melanoma cell proliferation and retarded melanoma xenograft growth. In contrast, overexpression of ACTN4 promoted melanocyte and melanoma cell proliferation and moreover, prompted melanocyte anchorage-independent growth. Of note, the expression of ACTN4 was transcriptionally activated by NF-κB. Taken together, our findings identify ACTN4 as an oncogenic regulator through driving a feedforward signaling axis of ACTN4-RIPK1-NF-κB, with potential implications for targeting ACTN4 in the treatment of melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hsu KS, Kao HY. Alpha-actinin 4 and tumorigenesis of breast cancer. Vitam Horm. 2013;93:323–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. 2015;5:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 1998;140:1383–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Djinovic-Carugo K, Gautel M, Ylanne J, Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002;513:119–23.

    Article  PubMed  CAS  Google Scholar 

  5. Broderick MJ, Winder SJ. Towards a complete atomic structure of spectrin family proteins. J Struct Biol. 2002;137:184–93.

    Article  PubMed  CAS  Google Scholar 

  6. Oikonomou KG, Zachou K, Dalekos GN. Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev. 2011;10:389–96.

    Article  PubMed  CAS  Google Scholar 

  7. Kakuya T, Mori T, Yoshimoto S, Watabe Y, Miura N, Shoji H, et al. Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg. 2017;46:968–976.

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe T, Ueno H, Watabe Y, Hiraoka N, Morizane C, Itami J, et al. ACTN4 copy number increase as a predictive biomarker for chemoradiotherapy of locally advanced pancreatic cancer. Br J Cancer. 2015;112:704–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yamamoto S, Tsuda H, Honda K, Onozato K, Takano M, Tamai S, et al. Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Mod Pathol. 2009;22:499–507.

    Article  PubMed  CAS  Google Scholar 

  10. Noro R, Honda K, Tsuta K, Ishii G, Maeshima AM, Miura N, et al. Distinct outcome of stage I lung adenocarcinoma with ACTN4 cell motility gene amplification. Ann Oncol. 2013;24:2594–2600.

    Article  PubMed  CAS  Google Scholar 

  11. Watabe Y, Mori T, Yoshimoto S, Nomura T, Shibahara T, Yamada T, et al. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma. Cancer Med. 2014;3:613–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yamamoto S, Tsuda H, Honda K, Takano M, Tamai S, Imoto I, et al. ACTN4 gene amplification and actinin-4 protein overexpression drive tumour development and histological progression in a high-grade subset of ovarian clear-cell adenocarcinomas. Histopathology. 2012;60:1073–83.

    Article  PubMed  Google Scholar 

  13. Gao Y, Li G, Sun L, He Y, Li X, Sun Z, et al. ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer. 2015;15:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shao H, Li S, Watkins SC, Wells A. Alpha-Actinin-4 is required for amoeboid-type invasiveness of melanoma cells. J Biol Chem. 2014;289:32717–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aksenova V, Turoverova L, Khotin M, Magnusson KE, Tulchinsky E, Melino G, et al. Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. Oncotarget. 2013;4:362–72.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY. The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem. 2011;286:1850–9.

    Article  PubMed  CAS  Google Scholar 

  17. Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T. MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. 2013;32:462–70.

    Article  PubMed  CAS  Google Scholar 

  18. Babakov VN, Petukhova OA, Turoverova LV, Kropacheva IV, Tentler DG, Bolshakova AV, et al. RelA/NF-kappaB transcription factor associates with alpha-actinin-4. Exp Cell Res. 2008;314:1030–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY, et al. A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA. 2006;103:15014–9.

    Article  PubMed  CAS  Google Scholar 

  20. Carragher NO, Fincham VJ, Riley D, Frame MC. Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem. 2001;276:4270–5.

    Article  PubMed  CAS  Google Scholar 

  21. Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008;65:2688–701.

    Article  PubMed  CAS  Google Scholar 

  22. Shao H, Wu C, Wells A. Phosphorylation of alpha-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin. J Biol Chem. 2010;285:2591–2600.

    Article  PubMed  CAS  Google Scholar 

  23. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 2007;14:400–10.

    Article  PubMed  CAS  Google Scholar 

  24. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.

    Article  PubMed  CAS  Google Scholar 

  25. Christofferson DE, Li Y, Hitomi J, Zhou W, Upperman C, Zhu H, et al. A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death Dis. 2012;3:e320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, et al. RIP1 kinase is an oncogenic driver in melanoma. Cancer Res. 2015;75:1736–48.

    Article  PubMed  CAS  Google Scholar 

  27. Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jin L, Chen J, Liu XY, Jiang CC, Zhang XD. The double life of RIPK1. Mol Cell Oncol. 2016;3:e1035690.

    Article  PubMed  CAS  Google Scholar 

  29. Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 2013;14:727–36.

    Article  PubMed  CAS  Google Scholar 

  30. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.

    Article  PubMed  CAS  Google Scholar 

  31. Blackwell K, Zhang L, Workman LM, Ting AT, Iwai K, Habelhah H. Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IkappaB kinase activation. Mol Cell Biol. 2013;33:1901–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Moquin DM, McQuade T, Chan FK. CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One. 2013;8:e76841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 1999;18:6867–74.

    Article  PubMed  CAS  Google Scholar 

  34. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007;131:682–93.

    Article  PubMed  CAS  Google Scholar 

  35. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  36. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dong L, Jin L, Tseng HY, Wang CY, Wilmott JS, Yosufi B, et al. Oncogenic suppression of PHLPP1 in human melanoma. Oncogene. 2014;33:4756–66.

    Article  PubMed  CAS  Google Scholar 

  38. Babakov VN, Bobkov DE, Petukhova OA, Turoverova LV. Kropacheva IV, Podol’skaia EP et al. [alpha-Actinin-4 and p65/RelA subunit of NF-kappaB transcription factor are co-localized and migrate together into the nucleus in EGF-stimulated A431 cell]. Tsitologiia. 2004;46:1064–72.

    PubMed  CAS  Google Scholar 

  39. Kumeta M, Yoshimura SH, Harata M, Takeyasu K. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci. 2010;123:1020–30.

    Article  PubMed  CAS  Google Scholar 

  40. Fagerlund R, Kinnunen L, Kohler M, Julkunen I, Melen K. NF-κB is transported into the nucleus by importin ɑ3 and importin ɑ4. J Biol Chem. 2005;280:15942–51.

    Article  PubMed  CAS  Google Scholar 

  41. Shao H, Travers T, Camacho CJ, Wells A. The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading. Int J Biochem Cell Biol. 2013;45:1051–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3:221–7.

    Article  PubMed  CAS  Google Scholar 

  43. Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P, et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA. 2011;108:15840–5.

    Article  PubMed  Google Scholar 

  44. Dong L, Jiang CC, Thorne RF, Croft A, Yang F, Liu H, et al. Ets-1 mediates upregulation of Mcl-1 downstream of XBP-1 in human melanoma cells upon ER stress. Oncogene. 2011;30:3716–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ye Y, Jin L, Wilmott JS, Hu WL, Yosufi B, Thorne RF, et al. PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma. Nat Commun. 2013;4:1508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hu W, Jin L, Jiang CC, Long GV, Scolyer RA, Wu Q, et al. AEBP1 upregulation confers acquired resistance to BRAF (V600E) inhibition in melanoma. Cell Death Dis. 2013;4:e914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tay KH, Jin L, Tseng HY, Jiang CC, Ye Y, Thorne RF, et al. Suppression of PP2A is critical for protection of melanoma cells upon endoplasmic reticulum stress. Cell Death Dis. 2012;3:e337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhao X, Hsu KS, Lim JH, Bruggeman LA, Kao HY. alpha-Actinin 4 potentiates nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-kappaB) activity in podocytes independent of its cytoplasmic actin binding function. J Biol Chem. 2015;290:338–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (NHMRC) (APP1083496 and APP1099947) and the Natural Science Foundation of China (NSFC) (81772908). L.J. and C.C.J. are recipients of Cancer Institute NSW Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Dong Zhang or Lei Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.Y., Tabataba, H., Liu, X.Y. et al. ACTN4 regulates the stability of RIPK1 in melanoma. Oncogene 37, 4033–4045 (2018). https://doi.org/10.1038/s41388-018-0260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0260-x

This article is cited by

Search

Quick links