Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermittent hypoxia induces a metastatic phenotype in breast cancer

Abstract

Hypoxia arises frequently in solid tumors and is a poor prognostic factor as it promotes tumor cell proliferation, invasion, angiogenesis, therapy resistance, and metastasis. Notably, there are two described forms of hypoxia present in a growing tumor: chronic hypoxia, caused by abnormal tumor vasculature, and intermittent hypoxia, caused by transient perfusion facilitated by tumor-supplying blood vessels. Here, we demonstrate that intermittent hypoxia, but not chronic hypoxia, endows breast cancer cells with greater metastatic potential. Using an immunocompetent and syngeneic murine model of breast cancer, we show that intermittent hypoxia enhances metastatic seeding and outgrowth in lungs in vivo. Furthermore, exposing mammary tumor cells to intermittent hypoxia promoted clonal diversity, upregulated metastasis-associated gene expression, induced a pro-tumorigenic secretory profile, increased stem-like cell marker expression, and gave rise to tumor-initiating cells at a relatively higher frequency. This work demonstrates that intermittent hypoxia, but not chronic hypoxia, induces a number of genetic, molecular, biochemical, and cellular changes that facilitate tumor cell survival, colonization, and the creation of a permissive microenvironment and thus enhances metastatic growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res. 2010;16:5928–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  4. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2009;29:625–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  6. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  7. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  PubMed  CAS  Google Scholar 

  8. Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 2008;275:2991–3002.

    Article  PubMed  CAS  Google Scholar 

  9. Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors. Strahlenther Onkol. 2012;188:616–27.

    Article  PubMed  CAS  Google Scholar 

  10. Kamat CD, Green DE, Warnke L, Thorpe JE, Ceriello A, Ihnat MA. Mutant p53 facilitates pro-angiogenic, hyperproliferative phenotype in response to chronic relative hypoxia. Cancer Lett. 2007;249:209–19.

    Article  PubMed  CAS  Google Scholar 

  11. Alqawi O, Wang HP, Espiritu M, Singh G. Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free Radic Res. 2007;41:788–97.

    Article  PubMed  CAS  Google Scholar 

  12. Hussein D, Estlin EJ, Dive C, Makin GWJ. Chronic hypoxia promotes hypoxia-inducible factor-1α–dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther. 2006;5:2241–50.

    Article  PubMed  CAS  Google Scholar 

  13. Chan N, Koritzinsky M, Zhao H, Bindra R, Glazer PM, Powell S, et al. Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res. 2008;68:605–14.

    Article  PubMed  CAS  Google Scholar 

  14. Zölzer F, Streffer C. Increased radiosensitivity with chronic hypoxia in four human tumor cell lines. Int J Radiat Oncol Biol Phys. 2002;54:910–20.

    Article  PubMed  Google Scholar 

  15. Bhaskara VK, Mohanam I, Rao JS, Mohanam S. Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells. PLoS One. 2012;7:e30905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Daneau G, Boidot R, Martinive P, Feron O. Identification of cyclooxygenase-2 as a major actor of the transcriptomic adaptation of endothelial and tumor cells to cyclic hypoxia: effect on angiogenesis and metastases. Clin Cancer Res. 2010;16:410–9.

    Article  PubMed  CAS  Google Scholar 

  17. Gupta R, Chetty C, Bhoopathi P, Lakka S, Mohanam S, Rao JS, et al. Downregulation of uPA/uPAR inhibits intermittent hypoxia-induced epithelial-mesenchymal transition (EMT) in DAOY and D283 medulloblastoma cells. Int J Oncol. 2011;38:733.

    PubMed  CAS  Google Scholar 

  18. Hsieh C-H, Chang H-T, Shen W-C, Shyu W-C, Liu R-S. Imaging the impact of Nox4 in cycling hypoxia-mediated U87 glioblastoma invasion and infiltration. Mol Imaging Biol. 2012;14:489–99.

    Article  PubMed  Google Scholar 

  19. Hsieh C-H, Lee C-H, Liang J-A, Yu C-Y, Shyu W-C. Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol Rep. 2010;24:1629–36.

    Article  PubMed  CAS  Google Scholar 

  20. Hsieh C-H, Shyu W-C, Chiang C-Y, Kuo J-W, Shen W-C, Liu R-S. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS One. 2011;6:e23945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu Y, Song X, Wang X, Wei L, Liu X, Yuan S, et al. Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. J Cell Biochem. 2010;111:554–63.

    Article  PubMed  CAS  Google Scholar 

  22. Martinive P, Defresne F, Bouzin C, Saliez J, Lair F, Grégoire V, et al. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 2006;66:11736–44.

    Article  PubMed  CAS  Google Scholar 

  23. Miao Z-F, Zhao T-T, Wang Z-N, Xu Y-Y, Mao X-Y, Wu J-H, et al. Influence of different hypoxia models on metastatic potential of SGC-7901 gastric cancer cells. Tumor Biol. 2014;35:6801–8.

    Article  CAS  Google Scholar 

  24. Mujcic H, Nagelkerke A, Rouschop KMA, Chung S, Chaudary N, Span PN, et al. Hypoxic activation of the PERK/eIF2α arm of the unfolded protein response promotes metastasis through induction of LAMP3. Am Assoc Cancer Res. 2013;19:6126–37.

    CAS  Google Scholar 

  25. Rofstad EK, Gaustad J-V, Egeland TAM, Mathiesen B, Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010;127:1535–46.

    Article  PubMed  CAS  Google Scholar 

  26. Rouschop KMA, Ramaekers CHMA, Schaaf MBE, Keulers TGH, Savelkouls KGM, Lambin P. et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol. 2009;92:411–16.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu H, Wang D, Zhang L, Xie X, Wu Y, Liu Y, et al. Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133 + pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep. 2014;32:935–42.

    Article  PubMed  CAS  Google Scholar 

  28. Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res. 2004;64:2054–61.

    Article  PubMed  CAS  Google Scholar 

  29. Cairns RA, Kalliomaki T, Hill RP. Acute (Cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res. 2001;61:8903–8.

    PubMed  CAS  Google Scholar 

  30. Cooper C, Liu G-Y, Niu Y-L, Santos S, Murphy LC, Watson PH. Intermittent hypoxia induces proteasome-dependent down-regulation of estrogen receptor α in human breast carcinoma. Clin Cancer Res. 2004;10:8720–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kalliomäki TM, McCallum G, Wells PG, Hill RP. Progression and metastasis in a transgenic mouse breast cancer model: effects of exposure to in vivo hypoxia. Cancer Lett. 2009;282:98–108.

    Article  PubMed  CAS  Google Scholar 

  32. Louie E, Nik S, Chen J-s, Schmidt M, Song B, Pacson C, et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010;12:R94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    PubMed  CAS  Google Scholar 

  35. Sceneay J, Chow MT, Chen A, Halse HM, Wong CSF, Andrews DM, et al. Primary tumor hypoxia recruits CD11b + /Ly6Cmed/Ly6G + immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012;72:3906–11.

    Article  PubMed  CAS  Google Scholar 

  36. Ma J, Lanza D, Guest I, Uk-Lim C, Glinskii A, Glinsky G, et al. Characterization of mammary cancer stem cells in the MMTV-PyMT mouse model. Tumor Biol. 2012;33:1983–96.

    Article  CAS  Google Scholar 

  37. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–78.

    Article  PubMed  CAS  Google Scholar 

  38. Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell. 2006;10:413–23.

    Article  PubMed  CAS  Google Scholar 

  39. Perez-Mancera PA, Young ARJ, Narita M. Inside and out: the activities of senescence in cancer. Nat Rev Cancer. 2014;4:547–58.

    Article  CAS  Google Scholar 

  40. Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.

    Article  PubMed  CAS  Google Scholar 

  41. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.

    Article  PubMed  CAS  Google Scholar 

  42. Aguirre Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7:834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14:611–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fang Y, Tan J, Zhang Q. Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int. 2015;39:891–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mazure NM, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol. 2010;22:177–80.

    Article  PubMed  CAS  Google Scholar 

  48. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–75.

    Article  PubMed  CAS  Google Scholar 

  49. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–55.

    Article  PubMed  CAS  Google Scholar 

  50. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  PubMed  CAS  Google Scholar 

  51. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFN[gamma] and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    Article  PubMed  CAS  Google Scholar 

  52. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67:10019–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64:6337–43.

    Article  PubMed  CAS  Google Scholar 

  54. Gutsche K, Randi EB, Blank V, Fink D, Wenger RH, Leo C, Scholz CC. Intermittent hypoxia confers pro-metastatic gene expression selectively through NF-κB in inflammatory breast cancer cells. Free Radic Biol Med. 2016;101:129–42.

    Article  PubMed  CAS  Google Scholar 

  55. Boidot R, Branders S, Helleputte T, Rubio LI, Dupont P, Feron O. A generic cycling hypoxia-derived prognostic gene signature: application to breast cancer profiling. Oncotarget. 2014;5:6947–63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wong CSF, Sceneay J, House CM, Halse HM, Liu MCP, George J, et al. Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy. Cancer Res. 2012;72:1694–704.

    Article  PubMed  CAS  Google Scholar 

  57. Chen A, Wong CSF, Liu MCP, House CM, Sceneay J, Bowtell DD, et al. The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget. 2014;6:862–73.

    PubMed Central  Google Scholar 

  58. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.

    Article  CAS  Google Scholar 

  59. Möller A, House CM, Wong CSF, Scanlon DB, Liu MCP, Ronai Z, et al. Inhibition of Siah ubiquitin ligase function. Oncogene. 2009;28:289–96.

    Article  PubMed  CAS  Google Scholar 

  60. Sceneay J, Liu MCP, Chen A, Wong CSF, Bowtell DDL, Möller A. The antioxidant N-acetylcysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PLoS One. 2013;8:e66388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Carmen Yong for help with flow cytometry and IV injections, and the groups of POH and AM for proof-reading the manuscript. This work was supported by funding from a project grant from the National Health and Medical Research Council of Australia (APP1068510 to AM). POH was supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia (APP1079133). AM was supported by Cancer Council Queensland (APP1045620), and National Breast Cancer Foundation (Australia) fellowship and grant (ECF-11-09, NC-13-26). AC was supported by an APA scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick O Humbert or Andreas Möller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Sceneay, J., Gödde, N. et al. Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 37, 4214–4225 (2018). https://doi.org/10.1038/s41388-018-0259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0259-3

This article is cited by

Search

Quick links