Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of the serine protease HTRA1 inhibits tumor growth by deregulating angiogenesis

Abstract

The serine protease HTRA1 is involved in several vascular diseases and its expression is often deregulated in cancer. We aimed at identifying how HTRA1 in the vasculature affects tumor growth. Here we report that silencing of HTRA1 in cultured endothelial cells increased migration rate and tube formation, whereas forced HTRA1 expression impaired sprouting angiogenesis. Mechanistically, endothelial HTRA1 expression enhanced Delta/Notch signaling by reducing the amount of the weak Notch ligand JAG1. HTRA1 physically interacted with JAG1 and cleaved it within the intracellular domain, leading to protein degradation. Expression of a constitutive active Notch1 prevented the hypersprouting phenotype upon silencing of HTRA1. In HtrA1-deficient mice, endothelial Notch signaling was diminished and isolated endothelial cells had increased expression of VEGF receptor-2. Growth of syngeneic tumors was strongly impaired in HtrA1−/− mice. The tumor vasculature was much denser in HtrA1−/− mice and less covered with mural cells. This chaotic and immature vascular network was poorly functional as indicated by large hypoxic tumor areas and low tumor cell proliferation rates. In summary, inhibition of HTRA1 in the tumor stroma impaired tumor progression by deregulating angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Luca A, De Falco M, Severino A, Campioni M, Santini D, Baldi F, et al. Distribution of the serine protease HtrA1 in normal human tissues. J Histochem Cytochem. 2003;51:1279–84.

    Article  PubMed  Google Scholar 

  2. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, et al. HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development. 2004;131:1041–53.

    Article  PubMed  CAS  Google Scholar 

  3. Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M, Huber R, et al. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-beta binding protein 1 and facilitates TGF-beta signaling. Proc Natl Acad Sci USA. 2014;111:16496–501.

    Article  PubMed  CAS  Google Scholar 

  4. Friedrich U, Datta S, Schubert T, Plossl K, Schneider M, Grassmann F, et al. Synonymous variants in HTRA1 implicated in AMD susceptibility impair its capacity to regulate TGF-beta signaling. Hum Mol Genet. 2015;24:6361–73.

    Article  PubMed  CAS  Google Scholar 

  5. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360:1729–39.

    Article  PubMed  CAS  Google Scholar 

  6. Shiga A, Nozaki H, Yokoseki A, Nihonmatsu M, Kawata H, Kato T, et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-beta1 via cleavage of proTGF-beta1. Hum Mol Genet. 2011;20:1800–10.

    Article  PubMed  CAS  Google Scholar 

  7. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314:992–3.

    Article  PubMed  CAS  Google Scholar 

  8. Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, et al. The role of human HtrA1 in arthritic disease. J Biol Chem. 2006;281:6124–9.

    Article  PubMed  CAS  Google Scholar 

  9. Teoh SS, Zhao M, Wang Y, Chen Q, Nie G. Serum HtrA1 is differentially regulated between early-onset and late-onset preeclampsia. Placenta. 2015;36:990–5.

    Article  PubMed  CAS  Google Scholar 

  10. Verdura E, Herve D, Scharrer E, Amador Mdel M, Guyant-Marechal L, Philippi A, et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain. 2015;138:2347–58.

    Article  PubMed  Google Scholar 

  11. He X, Ota T, Liu P, Su C, Chien J, Shridhar V. Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res. 2010;70:3109–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hasan MZ, Ikawati M, Tocharus J, Kawaichi M, Oka C. Abnormal development of placenta in HtrA1-deficient mice. Dev Biol. 2015;397:89–102.

    Article  PubMed  CAS  Google Scholar 

  13. Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M, et al. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone. 2005;37:323–36.

    Article  PubMed  CAS  Google Scholar 

  14. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

    Article  PubMed  CAS  Google Scholar 

  15. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137:1124–35.

    Article  PubMed  CAS  Google Scholar 

  16. Fischer A, Gessler M. Delta-Notch--and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 2007;35:4583–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Klose R, Berger C, Moll I, Adam MG, Schwarz F, Mohr K, et al. Soluble Notch ligand and receptor peptides act antagonistically during angiogenesis. Cardiovasc Res. 2015;107:153–63.

    Article  PubMed  CAS  Google Scholar 

  18. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444:1032–7.

    Article  PubMed  CAS  Google Scholar 

  19. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444:1083–7.

    Article  PubMed  CAS  Google Scholar 

  20. Poepsel S, Sprengel A, Sacca B, Kaschani F, Kaiser M, Gatsogiannis C, et al. Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat Chem Biol. 2015;11:862–9.

    Article  PubMed  CAS  Google Scholar 

  21. Brutsch R, Liebler SS, Wustehube J, Bartol A, Herberich SE, Adam MG, et al. Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis. Circ Res. 2010;107:592–601.

    Article  PubMed  CAS  Google Scholar 

  22. Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, et al. Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol. 2004;24:8813–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kofler NM, Cuervo H, Uh MK, Murtomaki A, Kitajewski J. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep. 2015;5:16449.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A, et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res. 2007;100:363–71.

    Article  PubMed  CAS  Google Scholar 

  25. Outtz HH, Wu JK, Wang X, Kitajewski J. Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J Immunol. 2010;185:4363–73.

    Article  PubMed  CAS  Google Scholar 

  26. Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y, et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res. 2007;100:70–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Lim SL, Du H, Zhang M, Kozak I, Hannum G, et al. High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-beta family member growth differentiation factor 6. J Biol Chem. 2012;287:1520–6.

    Article  PubMed  CAS  Google Scholar 

  28. Altobelli E, Angeletti PM, Morroni M, Profeta VF. HtrA1 as a promising tissue marker in cancer: a meta-analysis. BMC Cancer. 2018;18:143.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jabs M, Rose AJ, Lehmann LH, Taylor J, Moll I, Sijmonsma TP et al. Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart. Circulation. 2018, https://doi.org/10.1161/CIRCULATIONAHA.117.029733.

  30. Catrein I, Herrmann R, Bosserhoff A, Ruppert T. Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase. FEBS J. 2005;272:2892–900.

    Article  PubMed  CAS  Google Scholar 

  31. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74:5383–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of these DKFZ core facilities for excellent support: Genomics and Proteomics, Imaging and Flow Cytometry, and Center for Preclinical Research. We also thank the core facility for Mass Spectrometry and Proteomics of the ZMBH Heidelberg.

Funding

This work was supported by the Fritz-Thyssen Foundation (10.13.1.160), the Deutsche Forschungsgemeinschaft (SFB-TR23, project A7), the Deutsche Krebshilfe (110638), and the Helmholtz Society to AF.

Author contributions

RK, MGA, E-MW, IM, JW-L, FT, and AF conceived and designed the experiments and analyzed the data; CO and ME provided essential reagents and discussed the data; RK and AF wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, R., Adam, M.G., Weis, EM. et al. Inactivation of the serine protease HTRA1 inhibits tumor growth by deregulating angiogenesis. Oncogene 37, 4260–4272 (2018). https://doi.org/10.1038/s41388-018-0258-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0258-4

This article is cited by

Search

Quick links