Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation

Abstract

DNA damage exposure is a major modifier of cell fate in both normal and cancer tissues. In response to DNA damage, myeloid leukemia cells activate a poorly understood terminal differentiation process. Here, we show that the NFκB pathway directly activates expression of the proliferation inhibitor p21 in response to DNA damage in myeloid leukemia cells. In order to understand the role of this unexpected regulatory event, we ablated the NFκB binding site we identified in the p21 promoter, using CRISPR/Cas9-mediated genome editing. We found that NFκB-mediated p21 activation controls DNA damage-induced myeloid differentiation. Our results uncover a p53-independent pathway for p21 activation involved in controlling hematopoietic cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grove CS, Vassiliou GS. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech. 2014;7:941–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bruserud O, Gjertsen BT, Huang T. Induction of differentiation and apoptosis—a possible strategy in the treatment of adult acute myelogenous leukemia. Oncologist. 2000;5:454–62.

    Article  PubMed  CAS  Google Scholar 

  3. Watts JM, Tallman MS. Acute promyelocytic leukemia: what is the new standard of care? Blood Rev. 2014;28:205–12.

    Article  PubMed  Google Scholar 

  4. Sherman MH, Bassing CH, Teitell MA. Regulation of cell differentiation by the DNA damage response. Trends Cell Biol. 2011;21:312–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A, et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature. 2014;514:107–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature. 2007;447:686–90.

    Article  PubMed  CAS  Google Scholar 

  7. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–9.

    Article  PubMed  CAS  Google Scholar 

  8. Asada M, Yamada T, Fukumuro K, Mizutani S. p21Cip1/WAF1 is important for differentiation and survival of U937 cells. Leukemia. 1998;12:1944–50.

    Article  PubMed  CAS  Google Scholar 

  9. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  PubMed  CAS  Google Scholar 

  10. Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med. 2017;23:310–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cheung KJ, Horsman DE, Gascoyne RD. The significance of TP53 in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br J Haematol. 2009;146:257–69.

    Article  PubMed  CAS  Google Scholar 

  12. Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Melo MB, Ahmad NN, Lima CS, Pagnano KB, Bordin S, Lorand-Metze I, et al. Mutations in the p53 gene in acute myeloid leukemia patients correlate with poor prognosis. Hematology. 2002;7:13–9.

    Article  PubMed  CAS  Google Scholar 

  14. Rizzo MG, Zepparoni A, Cristofanelli B, Scardigli R, Crescenzi M, Blandino G, et al. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation. Br J Cancer. 1998;77:1429–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F, et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood. 1992;79:2378–83.

    PubMed  CAS  Google Scholar 

  16. Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci USA. 1985;82:790–4.

    Article  PubMed  CAS  Google Scholar 

  17. Figarola JL, Weng Y, Lincoln C, Horne D, Rahbar S. Novel dichlorophenyl urea compounds inhibit proliferation of human leukemia HL-60 cells by inducing cell cycle arrest, differentiation and apoptosis. Invest New Drugs. 2012;30:1413–25.

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, Zhou G, Clark T, Chen J, Rowley JD, Wang SM. The pattern of gene expression in human CD15+myeloid progenitor cells. Proc Natl Acad Sci USA. 2001;98:3340–5.

    Article  PubMed  CAS  Google Scholar 

  19. Hayden MS, Ghosh S. NF-kappa B, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-kappaB in aging and disease. Aging Dis. 2011;2:449–65.

    PubMed  PubMed Central  Google Scholar 

  21. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell. 2003;115:565–76.

    Article  PubMed  CAS  Google Scholar 

  22. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  PubMed  CAS  Google Scholar 

  23. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 1996;10:142–53.

    Article  PubMed  CAS  Google Scholar 

  26. Pennington KN, Taylor JA, Bren GD, Paya CV. IkappaB kinase-dependent chronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition of differentiation-induced apoptosis of monocytes. Mol Cell Biol. 2001;21:1930–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18:777–89.

    Article  PubMed  CAS  Google Scholar 

  28. Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 2015;16:1060–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell. 2012;148:1001–14.

    Article  PubMed  CAS  Google Scholar 

  30. Gupta D, Shah HP, Malu K, Berliner N, Gaines P. Differentiation and characterization of myeloid cells. Curr Protoc Immunol. 2014;104:Unit 22F 25.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Wafik el-Deiry, Sinisa Dovat, David Claxton, Gregory Yochum, Sergei Grigoryev, James Broach, and the Penn State Flow Cytometry Core for materials, advice, and support. This work was supported by the Department of Defense (award CA140303) and the St. Baldrick Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George-Lucian Moldovan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolae, C.M., O’Connor, M.J., Constantin, D. et al. NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene 37, 3647–3656 (2018). https://doi.org/10.1038/s41388-018-0219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0219-y

This article is cited by

Search

Quick links