Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis

Abstract

BH3 mimetics are emerging novel anticancer therapeutics that potently and specifically inhibit antiapoptotic BCL-2 proteins and thereby induce cell death in many cancer entities. Previously, we demonstrated that JNJ-26481585 (JNJ), a second-generation histone deacetylase inhibitor (HDACI), engages mitochondrial apoptosis via upregulation of several BH3-only proteins. In the present study, we describe synergistic interactions of JNJ with BH3 mimetics (i.e. ABT-737, ABT-199) in rhabdomyosarcoma (RMS) cells. Importantly, JNJ synergizes with ABT-199 to trigger apoptosis in primary-derived RMS cells isolated from tumor samples, underlining the translational importance of combining these compounds and their potential to improve cancer therapy. Importantly, JNJ/ABT-199 cotreatment also significantly inhibits long-term survival of RMS cells. Mechanistically, JNJ increases expression levels of the BH3-only protein BIM, while exposure to ABT-199 displaces BIM from BCL-2 and shuttles BIM to MCL-1, which also constitutively sequesters NOXA. Both BIM and NOXA contribute to JNJ/ABT-199-mediated cell death, as individual knockdown of NOXA or BIM significantly prevents cell death. Further, JNJ and ABT-199 act in concert to activate BAK and BAX, resulting in loss of the mitochondrial membrane potential (MMP) and caspase activation. These events are required for JNJ/ABT-199-mediated apoptosis, since BAK or BAX silencing or inhibition of caspases significantly protects from JNJ/ABT-199-induced cell death. Rescue experiments demonstrate that overexpression of MCL-1, but not overexpression of BCL-2, blocks JNJ/ABT-199-induced apoptosis. In conclusion, this study provides the first demonstration of ABT-199-induced priming, which sensitizes RMS cells to HDACI, such as JNJ, by engaging mitochondrial apoptosis, highlighting that BH3 mimetics show great promise for the treatment of RMS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller RW, Young JL Jr., Novakovic B. Childhood cancer. Cancer. 1995;75:395–405.

    Article  CAS  PubMed  Google Scholar 

  2. Dagher R, Helman L. Rhabdomyosarcoma: an overview. Oncologist. 1999;4:34–44.

    CAS  PubMed  Google Scholar 

  3. Hayes-Jordan A, Andrassy R. Rhabdomyosarcoma in children. Curr Opin Pediatr. 2009;21:373–8.

    Article  PubMed  Google Scholar 

  4. Dantonello TM, Int-Veen C, Harms D, Leuschner I, Schmidt BF, Herbst M, et al. Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. J Clin Oncol. 2009;27:1446–55.

    Article  CAS  PubMed  Google Scholar 

  5. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8:1409–20.

    Article  CAS  PubMed  Google Scholar 

  6. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16.

    Article  CAS  PubMed  Google Scholar 

  7. Heinicke U, Kupka J, Fichter I, Fulda S. Critical role of mitochondria-mediated apoptosis for JNJ-26481585-induced antitumor activity in rhabdomyosarcoma. Oncogene. 2016;35:3729–41.

    Article  CAS  PubMed  Google Scholar 

  8. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  9. Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res. 2012;116:165–97.

    Article  CAS  PubMed  Google Scholar 

  10. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.

    Article  CAS  PubMed  Google Scholar 

  11. Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16:99–109.

    Article  CAS  PubMed  Google Scholar 

  12. Sarosiek KA, Letai A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics—recent successes, current challenges and future promise. FEBS J. 2016;283:3523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.

    Article  CAS  PubMed  Google Scholar 

  15. Khaw SL, Merino D, Anderson MA, Glaser SP, Bouillet P, Roberts AW, et al. Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia. 2014;28:1207–15.

    Article  CAS  PubMed  Google Scholar 

  16. Peirs S, Matthijssens F, Goossens S, Van de Walle I, Ruggero K, de Bock CE, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014;124:3738–47.

    Article  CAS  PubMed  Google Scholar 

  17. Carol H, Gorlick R, Kolb EA, Morton CL, Manesh DM, Keir ST, et al. Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2014;61:245–52.

    Article  PubMed  Google Scholar 

  18. Heinicke U, Fulda S. Chemosensitization of rhabdomyosarcoma cells by the histone deacetylase inhibitor SAHA. Cancer Lett. 2014;351:50–8.

    Article  CAS  PubMed  Google Scholar 

  19. Heinicke U, Kupka J, Fulda S. JNJ-26481585 primes rhabdomyosarcoma cells for chemotherapeutics by engaging the mitochondrial pathway of apoptosis. Oncotarget. 2015;6:37836–51.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.

    Article  CAS  PubMed  Google Scholar 

  22. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol. 1999;144:903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144:891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dewson G. Investigating the Oligomerization of Bak and Bax during Apoptosis by Cysteine Linkage. Cold Spring Harb Protoc. 2015;2015:481–4.

    PubMed  Google Scholar 

  25. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013;24:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arts J, King P, Marien A, Floren W, Belien A, Janssen L, et al. JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res. 2009;15:6841–51.

    Article  CAS  PubMed  Google Scholar 

  27. Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, et al. Binding of released bim to mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res. 2016;22:4440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillips DC, Xiao Y, Lam LT, Litvinovich E, Roberts-Rapp L, Souers AJ, et al. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5:e368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michels J, Obrist F, Vitale I, Lissa D, Garcia P, Behnam-Motlagh P, et al. MCL-1 dependency of cisplatin-resistant cancer cells. Biochem Pharmacol. 2014;92:55–61.

    Article  CAS  PubMed  Google Scholar 

  30. Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, et al. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017;77:2512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  CAS  PubMed  Google Scholar 

  32. Pazzaglia L, Chiechi A, Conti A, Gamberi G, Magagnoli G, Novello C, et al. Genetic and molecular alterations in rhabdomyosarcoma: mRNA overexpression of MCL1 and MAP2K4 genes. Histol Histopathol. 2009;24:61–7.

    CAS  PubMed  Google Scholar 

  33. Preuss E, Hugle M, Reimann R, Schlecht M, Fulda S. Pan-mammalian target of rapamycin (mTOR) inhibitor AZD8055 primes rhabdomyosarcoma cells for ABT-737-induced apoptosis by down-regulating Mcl-1 protein. J Biol Chem. 2013;288:35287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carter BZMP, Mu H, Zhou H, Mak DH, Schober WD, et al. Cooperative targeting of Bcl-2 family proteins by ABT-199 (GDC-0199) and tyrosine kinase inhibitors to eradicate blast crisis CML and CML stem/progenitor cells. Blood. 2014;124:512

    Google Scholar 

  35. Portell CAAM, Brett LK, Gordon VL, Capaldo B, Xing JC, et al. Synergistic cytotoxicity of ibrutinib and the BCL2 antagonist, ABT-199(GDC-0199) in mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL): molecular analysis reveals mechanisms of target interactions. Blood. 2014;124:509

    Google Scholar 

  36. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015;6:e1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res. 1997;57:3823–9.

    CAS  PubMed  Google Scholar 

  38. Hugle M, Belz K, Fulda S. Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs. Cell Death Differ. 2015;22:1946–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hacker S, Dittrich A, Mohr A, Schweitzer T, Rutkowski S, Krauss J, et al. Histone deacetylase inhibitors cooperate with IFN-gamma to restore caspase-8 expression and overcome TRAIL resistance in cancers with silencing of caspase-8. Oncogene. 2009;28:3097–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Bruecher for expert technical assistance and C. Hugenberg for excellent secretarial assistance. This work has been partially supported by grants from the BMBF, the Deutsche Krebshilfe and the Deutsche Kinderkrebsstiftung (to SF) and a grant from the Medical Faculty, Goethe-University Frankfurt (to MV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fulda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinicke, U., Haydn, T., Kehr, S. et al. BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis. Oncogene 37, 5325–5339 (2018). https://doi.org/10.1038/s41388-018-0212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0212-5

This article is cited by

Search

Quick links