Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS–HIF-1α–AQP3–ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis

Abstract

Helicobacter pylori (H. pylori) is the major stomach carcinogen, but the molecular mechanism responsible for the pathogenesis of cancer development mediated by H. pylori infection is still unclear. Aquaporin 3 (AQP3), overexpressed in gastric carcinoma, has a crucial role in gastric carcinogenesis and progression. However, the triggers and precise regulations for AQP3 upregulation during gastric carcinogens also remain unknown. Here we report that H. pylori infection-mediated carcinogenesis may be mechanistically depended on the upregulation of AQP3 expression via reactive oxygen species (ROS) pathway activation in the stomach. The retrospective analyses of clinical samples from patients with gastric carcinoma and other different stages of gastric diseases indicated that AQP3 expression was positively associated with gastric mucosal disease progression and H. pylori infection status as well. Furthermore, H. pylori infection significantly upregulated AQP3 and HIF-1α expression and increased ROS amount in human gastric epithelial AGS and GES-1 cells. Blockage of ROS with inhibitors, NAC and DPI, markedly decreased the expression of AQP3 and HIF-1α in both AGS and GES-1 cells simultaneously. Furthermore, the increased AQP3 in cells was mechanistically due to the transcriptional regulation by HIF-1α. In addition, H. pylori infection exerted production of proinflammatory cytokines IL-6, IL-8, and TNF depending on AQP3 level. Importantly, these in vitro novel findings were further investigated in vivo in a mouse H. pylori infectious model. Our current studies identify the mechanistic link between H. pylori infection and AQP3 upregulation in the pathogenesis of gastric carcinoma, which involves the activation of the ROS–HIF-1α axis and the exacerbated ROS–HIF-1α–AQP3–ROS loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fichtner-Feigl S, Kesselring R, Strober W. Chronic inflammation and the development of malignancy in the GI tract. Trends Immunol. 2015;36:451–9.

    Article  CAS  Google Scholar 

  2. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15.

    Article  Google Scholar 

  3. Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36(Suppl 1):S232–253.

    Article  CAS  Google Scholar 

  4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  Google Scholar 

  5. Yamaguchi N, Kakizoe T. Synergistic interaction between Helicobacter pylori gastritis and diet in gastric cancer. Lancet Oncol. 2001;2:88–94.

    Article  CAS  Google Scholar 

  6. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.

    Article  CAS  Google Scholar 

  7. International Agency for Research on Cancer. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval Carcinog Risks Hum. 1994;61:1–241.

  8. Backert S, Neddermann M, Maubach G, Naumann M. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2016;1(21Suppl):19–25.

    Article  Google Scholar 

  9. Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol. 2014;20:12767–80.

    Article  CAS  Google Scholar 

  10. Wan XK, Yuan SL, Tao HX, Diao LP, Wang YC, Cao C, et al. The upregulation of TRAF1 induced by Helicobacter pylori plays an antiapoptotic effect on the infected cells. Helicobacter. 2016;21:554–64.

    Article  CAS  Google Scholar 

  11. Gajewski A, Mnich E, Szymański K, Hinc K, Obuchowski M, Moran AP, et al. Helicobacter pylori antigens, acetylsalicylic acid, LDL and 7-ketocholesterol - their potential role in destabilizing the gastric epithelial cell barrier. An in vitro model of Kato III cells. Acta Biochim Pol. 2016;63:145–52.

    Article  CAS  Google Scholar 

  12. Li X, Liu S, Luo J, Liu A, Tang S, Liu S, et al. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway. Pathog Dis. 2015;73:(pii):ftu024.

  13. Hartung ML, Gruber DC, Koch KN, Grüter L, Rehrauer H, Tegtmeyer N, et al. H. pylori-induced DNA strand breaks are introduced by nucleotide excision repair endonucleases and promote NF-kB target gene expression. Cell Rep. 2015;13:70–79.

    Article  CAS  Google Scholar 

  14. Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF. Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep. 2015;11:1703–17013.

    Article  CAS  Google Scholar 

  15. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.

    Article  CAS  Google Scholar 

  16. Gobert AP, Wilson KT. Human and Helicobacter pylori interactions determine the outcome of gastric diseases. Curr Top Microbiol. 2017;400:27–52.

    CAS  Google Scholar 

  17. Handa O, Naito Y, Yoshikawa T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflamm Res. 2010;59:997–1003.

    Article  CAS  Google Scholar 

  18. Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: a blessing in disguise. Free Radic Biol Med. 2017;105:16–27.

    Article  CAS  Google Scholar 

  19. Shimizu T, Chiba T, Marusawa H. Helicobacter pylori-mediated genetic instability and gastric carcinogenesis. Curr Top Microbiol. 2017;400:305–23.

    CAS  Google Scholar 

  20. Kang MJ, Song EJ, Kim BY, Kim DJ, Park JH. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway. Helicobacter. 2014;19:476–83.

    Article  CAS  Google Scholar 

  21. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13:259–77.

    Article  CAS  Google Scholar 

  22. Shen L, Zhu Z, Huang Y, Shu Y, Sun M, Xu H, et al. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed Pharmacother. 2010;64:313–8.

    Article  CAS  Google Scholar 

  23. Huang Y, Zhu Z, Sun M, Wang J, Guo R, Shen L, et al. Critical role of Aquaporin-3 in the human epidermal growth factor-induced migration and proliferation in the human gastric adenocarcinoma cells. Cancer Biol Ther. 2010;9:1000–7.

    Article  CAS  Google Scholar 

  24. Wang J, Gui Z, Deng L, Sun M, Guo R, Zhang W, et al. c-Met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signalling pathway. Cancer Lett. 2012;319:109–17.

    Article  CAS  Google Scholar 

  25. Chen J, Wang T, Zhou YC, Gao F, Zhang ZH, Xu H, et al. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res. 2014;33:38.

    Article  CAS  Google Scholar 

  26. Zhou Y, Wang Y, Wen J, Zhao H, Dong X, Zhang Z, et al. Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β/β-catenin pathway. Oncotarget. 2016;7:16529–41.

    PubMed  PubMed Central  Google Scholar 

  27. Zhao H, Yang X, Zhou Y, Zhang W, Wang Y, Wen J, et al. Potential role of aquaporin 3 in gastric intestinal metaplasia. Oncotarget. 2015;6:38926–33.

    PubMed  PubMed Central  Google Scholar 

  28. Dong X, Wang Y, Zhou Y, Wen J, Wang S, Shen L. Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy. Cell Death Discov. 2016;2:16087.

    Article  Google Scholar 

  29. Wang G, Gao F, Zhang W, Chen J, Wang T, Zhang G, et al. Involvement of aquaporin 3 in Helicobacter pylori-related gastric diseases. PLoS ONE. 2012;7:e49104.

    Article  CAS  Google Scholar 

  30. Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA. 2010;107:15681–6.

    Article  CAS  Google Scholar 

  31. Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2014;1840:1596–604.

    Article  CAS  Google Scholar 

  32. Satooka H, Hara-Chikuma M. Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol. 2016;36:1206–18.

    Article  CAS  Google Scholar 

  33. Thiagarajah JR, Chang J, Goettel JA, Verkman AS, Lencer WI. Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci USA. 2017;114:568–73.

    Article  CAS  Google Scholar 

  34. Nookaew I, Thorell K, Worah K, Wang S, Hibberd ML, Sjövall H, et al. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med Genom. 2013;6:41.

    Article  Google Scholar 

  35. Park JH, Kim TY, Jong HS, Kim TY, Chun YS, Park JW, et al. Gastric epithelial reactive oxygen species prevent normoxic degradation of hypoxia-inducible factor-1 alpha in gastric cancer cells. Clin Cancer Res. 2003;9:433–40.

    CAS  PubMed  Google Scholar 

  36. Dong X, Hu F, Gao W, Cheng H, Liu X, Xu L. et al. Detection of Helicobacter pylori by immunoblot: a multiple-center study. Zhonghua Yi Xue Za Zhi. 2016;96:265–9.

    CAS  PubMed  Google Scholar 

  37. Suarez G, Romero-Gallo J, Piazuelo MB, Wang G, Maier RJ, Forsberg LS, et al. Modification of Helicobacter pylori peptidoglycan enhances NOD1 activation and promotes cancer of the stomach. Cancer Res. 2015;75:1749–59.

    Article  CAS  Google Scholar 

  38. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer. 2015;136:487–90.

    Article  CAS  Google Scholar 

  39. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9:609–17.

    Article  CAS  Google Scholar 

  40. Bhattacharyya A, Chattopadhyay R, Hall EH, Mebrahtu ST, Ernst PB, Crowe SE. Mechanism of hypoxia-inducible factor 1 alpha-mediated Mcl1 regulation in Helicobacter pylori-infected human gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1177–86.

    Article  CAS  Google Scholar 

  41. Shida M, Kitajima Y, Nakamura J, Yanagihara K, Baba K, Wakiyama K, et al. Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia. Int J Oncol. 2016;48:1379–90.

    Article  CAS  Google Scholar 

  42. Grandjean G, de Jong PR, James BP, Koh MY, Lemos R, Kingston J, et al. Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights aldolase A as a therapeutic target. Cancer Res. 2016;76:4259–69.

    Article  CAS  Google Scholar 

  43. Yuan LW, Yamashita H, Seto Y. Glucose metabolism in gastric cancer: the cutting-edge. World J Gastroenterol. 2016;22:2046–59.

    Article  CAS  Google Scholar 

  44. Nakamura J, Kitajima Y, Kai K, Hashiguchi K, Hiraki M, Noshiro H, et al. HIF-1 alpha is an unfavorable determinant of relapse in gastric cancer patients who underwent curative surgery followed by adjuvant 5-FU chemotherapy. Int J Cancer. 2010;127:1158–71.

    Article  CAS  Google Scholar 

  45. Nam SY, Ko YS, Jung J, Yoon J, Kim YH, Choi YJ, et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br J Cancer. 2011;104:166–74.

    Article  CAS  Google Scholar 

  46. Li YN, Xi MM, Guo Y, Hai CX, Yang WL, Qin XJ. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett. 2014;224:165–74.

    Article  CAS  Google Scholar 

  47. Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc. 2006;1:729–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Wenxi Wu (Department of General Surgery, First Affiliated Hospital, Nanjing Medical University) for his helpful suggestions and critical review of the manuscript.

Funding

This project was partially supported by the National Natural Science Foundation of China (Grant No. 81272711 to LS, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801 to LS), and the Key Medical Talents Program of Jiangsu Province (ZDRCA2016014 to LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizong Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Wang, Y., Gao, C. et al. Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS–HIF-1α–AQP3–ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene 37, 3549–3561 (2018). https://doi.org/10.1038/s41388-018-0208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0208-1

This article is cited by

Search

Quick links