Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rab34 regulates adhesion, migration, and invasion of breast cancer cells

Abstract

The small GTPase Rab34 regulates spatial distribution of the lysosomes, secretion, and macropinocytosis. In this study, we found that Rab34 is over-expressed in aggressive breast cancer cells, implying a potential role of Rab34 in breast cancer. Silencing Rab34 by shRNA inhibits cell migration, invasion, and adhesion of breast cancer cells. Rab34 specifically binds to the cytoplasmic tail of integrin β3, and depletion of Rab34 promotes the degradation of integrin β3. Interestingly, EGF induces the translocation of Rab34 to the membrane ruffle, which is greatly enhanced by the expression of Src kinase. Accordingly, Rab34 is tyrosine phosphorylated by Src at Y247 residue. A mutant mimicking phosphorylated form of Rab34 (Rab34Y247D) promotes cell migration and invasion. Importantly, the tyrosine phosphorylation of Rab34 is inhibited in cells in suspension, and increased with the cells re-adhesion. In addition, Rab34Y247D promotes cell adhesion, and enhances integrin β3 endocytosis and recycling. The results uncover a role of Rab34 in migration and invasion of breast cancer cells and its involvement in cancer metastasis, and provide a novel mechanism of tyrosine phosphorylation of Rab34 in regulating cell migration, invasion, and adhesion through modulating the endocytosis, stability, and recycling of integrin β3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hawes CR, Brandizzi F, Andreeva AV. Endomembranes and vesicle trafficking. Curr Opin Plant Biol. 1999;2:454–61.

    Article  PubMed  CAS  Google Scholar 

  2. Spang A. The life cycle of a transport vesicle. Cell Mol life Sci. 2008;65:2781–9.

    Article  PubMed  CAS  Google Scholar 

  3. Salisbury JL, Condeelis JS, Satir P. Receptor-mediated endocytosis: machinery and regulation of the clathrin-coated vesicle pathway. Int Rev Exp Pathol. 1983;24:1–62.

    Article  PubMed  CAS  Google Scholar 

  4. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008;8:835–50.

    Article  PubMed  CAS  Google Scholar 

  5. Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 2005;118:4765–83.

    Article  PubMed  CAS  Google Scholar 

  6. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796:75–90.

    PubMed  CAS  Google Scholar 

  7. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  PubMed  CAS  Google Scholar 

  8. Harris KP, Littleton JT. Vesicle trafficking: a Rab family profile. Curr Biol. 2011;21:R841–843.

    Article  PubMed  CAS  Google Scholar 

  9. Bhuin T, Roy JK. Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res. 2014;328:1–19.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 2005;65:2516–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10:1251–6.

    Article  PubMed  CAS  Google Scholar 

  12. Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13:496–510.

    Article  PubMed  CAS  Google Scholar 

  13. Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A, Garcia MA, et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 2007;26:1499–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang T, Zhang M, Ma Z, Guo K, Tergaonkar V, Zeng Q, et al. A role of Rab7 in stabilizing EGFR-Her2 and in sustaining Akt survival signal. J Cell Physiol. 2012;227:2788–97.

    Article  PubMed  CAS  Google Scholar 

  15. Edinger AL, Cinalli RM, Thompson CB. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell. 2003;5:571–82.

    Article  PubMed  CAS  Google Scholar 

  16. Igarashi T, Araki K, Yokobori T, Altan B, Yamanaka T, Ishii N, et al. Association of RAB5 overexpression in pancreatic cancer with cancer progression and poor prognosis via E-cadherin suppression. Oncotarget. 2017;8:12290–12300.

    PubMed  PubMed Central  Google Scholar 

  17. Bin Z, Dedong H, Xiangjie F, Hongwei X, Qinghui Y. The microRNA-367 inhibits the invasion and metastasis of gastric cancer by directly repressing Rab23. Genet Test Mol Biomark. 2015;19:69–74.

    Article  CAS  Google Scholar 

  18. Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev. 2003;55:1421–37.

    Article  PubMed  CAS  Google Scholar 

  19. Starling GP, Yip YY, Sanger A, Morton PE, Eden ER, Dodding MP. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang T, Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol Biol Cell. 2002;13:4317–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Speight P, Silverman M. Diacylglycerol-activated Hmunc13 serves as an effector of the GTPase Rab34. Traffic. 2005;6:858–65.

    Article  PubMed  CAS  Google Scholar 

  22. Goldenberg NM, Grinstein S, Silverman M. Golgi-bound Rab34 is a novel member of the secretory pathway. Mol Biol Cell. 2007;18:4762–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sun P, Yamamoto H, Suetsugu S, Miki H, Takenawa T, Endo T. Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J Biol Chem. 2003;278:4063–71.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang X, Liang X, Gu J, Chang D, Zhang J, Chen Z, et al. Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale. 2017;9:150–63.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Zhang X, Liu G, Chang D, Liang X, Zhu X, et al. Intracellular trafficking network of protein nanocapsules: endocytosis, exocytosis and autophagy. Theranostics. 2016;6:2099–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Coyne CB, Shen L, Turner JR, Bergelson JM. Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe. 2007;2:181–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang HJ, Gao Y, Chen L, Li YL, Jiang CL. RAB34 was a progression- and prognosis-associated biomarker in gliomas. Tumour Biol. 2015;36:1573–8.

    Article  PubMed  CAS  Google Scholar 

  28. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32:35–48.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol. 2008;183:143–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Subramani D, Alahari SK. Integrin-mediated function of Rab GTPases in cancer progression. Mol Cancer. 2010;9:312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gu Z, Noss EH, Hsu VW, Brenner MB. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. J Cell Biol. 2011;193:61–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Amyere M, Mettlen M, Van Der Smissen P, Platek A, Payrastre B, Veithen A, et al. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int J Med Microbiol. 2002;291:487–94.

    Article  PubMed  CAS  Google Scholar 

  34. Mettlen M, Platek A, Van Der Smissen P, Carpentier S, Amyere M, Lanzetti L, et al. Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic. 2006;7:589–603.

    Article  PubMed  CAS  Google Scholar 

  35. Di Florio A, Capurso G, Milione M, Panzuto F, Geremia R, Delle Fave G, et al. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells. Endocr Relat Cancer. 2007;14:111–24.

    Article  PubMed  CAS  Google Scholar 

  36. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci USA. 2003;100:13298–302.

    Article  PubMed  CAS  Google Scholar 

  37. Wright PK. Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Pat Anticancer Drug Discov. 2008;3:137–47.

    Article  PubMed  CAS  Google Scholar 

  38. Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet. 2011;80:305–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Structural framework of c-Src activation by integrin beta3. Blood. 2013;121:700–6.

    Article  PubMed  CAS  Google Scholar 

  40. Alanko J, Mai A, Jacquemet G, Schauer K, Kaukonen R, Saari M, et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol. 2015;17:1412–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Alanko J, Ivaska J. Endosomes: emerging platforms for integrin-mediated FAK signalling. Trends Cell Biol. 2016;26:391–8.

    Article  PubMed  CAS  Google Scholar 

  42. Tang BL, Ng EL. Rabs and cancer cell motility. Cell Motil Cytoskelet. 2009;66:365–70.

    Article  CAS  Google Scholar 

  43. Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases. 2015;6:135–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J Cell Biol. 2006;173:767–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chodniewicz D, Klemke RL. Guiding cell migration through directed extension and stabilization of pseudopodia. Exp Cell Res. 2004;301:31–37.

    Article  PubMed  CAS  Google Scholar 

  46. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010;26:315–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol. 2015;36:41–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516–23.

    Article  PubMed  CAS  Google Scholar 

  49. Valdembri D, Serini G. Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol. 2012;24:582–91.

    Article  PubMed  CAS  Google Scholar 

  50. Ihemelandu CU, Naab TJ, Mezghebe HM, Makambi KH, Siram SM, Leffall LD Jr, et al. Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women. Am J Surg. 2008;195:153–8.

    Article  PubMed  Google Scholar 

  51. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274:113–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee U, Frankenberger C, Yun J, Bevilacqua E, Caldas C, Chin SF, et al. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS ONE. 2013;8:e82125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res. 2009;28:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lin X, Zhang J, Chen L, Chen Y, Xu X, Hong W, et al. Tyrosine phosphorylation of Rab7 by Src kinase. Cell Signal. 2017;35:84–94.

    Article  PubMed  CAS  Google Scholar 

  55. Wang T, Wong KK, Hong W. A unique region of RILP distinguishes it from its related proteins in its regulation of lysosomal morphology and interaction with Rab7 and Rab34. Mol Biol Cell. 2004;15:815–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.31371353 and No.31671478) and International Science & Technology Cooperation Program of China (No.2013DFG32730). The cDNA of integrin β1 and integrin β3 were kindly provided by Dr. Jiahuai Han (State Key Laboratory of Cellular Stress Biology, Xiamen University, China).

Author contributions

SL and XX conducted most of the experiments and analyzed the results. CY and ZY conducted experiments on cell metastasis in vivo. TR and FR completed assays on cancer tissues. QH, JL, and ZY provided technical supports. HW involved in the ideas and paper writing. WT conceived the idea for the project, experiments design, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjin Hong or Tuanlao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Xu, X., Chen, Y. et al. Rab34 regulates adhesion, migration, and invasion of breast cancer cells. Oncogene 37, 3698–3714 (2018). https://doi.org/10.1038/s41388-018-0202-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0202-7

This article is cited by

Search

Quick links