Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer


A critical mechanism that has been proposed for transcription regulation by estrogen receptor α (ER) is the tethering of ER to DNA via other transcription factors, such as AP-1. However, genome-wide assessment of the overlap in chromatin binding repertoires of these two transcription factors has not been reported. Here, we show that the AP-1 transcription factor c-Jun interacts with ER and that c-Jun chromatin binding shows extensive overlap with ER binding at the global level. Further, we show that c-Jun overexpression reprograms ER chromatin binding and modulates ER-mediated gene regulation. Our data are consistent with a mechanism where estrogen/ER-dependent crosstalk with AP-1 at the transcriptional level is mediated through the tethering of ER to DNA bound AP-1. Additionally, in our system c-Jun overexpression causes reduced sensitivity to tamoxifen in ER+ breast cancer cells. Integrated cistrome, transcriptome, and clinical data reveal TGFBI as a candidate gene which may confer tamoxifen resistance by ER and AP-1 crosstalk. Further, we show that TGFBI expression is elevated in breast cancer compared to normal breast. Together, our data provide a novel genome-wide footprint of ER and AP-1 crosstalk and suggest AP-1 and TGFBI signaling as potential therapeutic targets in AP-1-overexpressing ER-positive breast tumors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Zhao C, Dahlman-Wright K, Gustafsson JA. Estrogen signaling via estrogen receptor β. J Biol Chem. 2010;285:39575–9.

    CAS  Article  Google Scholar 

  2. 2.

    den Hollander P, Savage MI, Brown PH. Targeted therapy for breast cancer prevention. Front Oncol. 2013;3:250.

    Google Scholar 

  3. 3.

    Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378:771–84.

    CAS  Article  Google Scholar 

  4. 4.

    Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631–43.

    CAS  Article  Google Scholar 

  5. 5.

    Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–47.

    CAS  Article  Google Scholar 

  6. 6.

    Ali S, Rasool M, Chaoudhry H, P NP, Jha P, Hafiz A, et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016;12:135–9.

    Article  Google Scholar 

  7. 7.

    Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, et al. Blockade of AP-1 potentiates endocrine therapy and overcomes resistance. Mol Cancer Res. 2016;14:470–81.

    CAS  Article  Google Scholar 

  8. 8.

    Shaulian E. AP-1—The Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22:894–9.

    CAS  Article  Google Scholar 

  9. 9.

    Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, et al. Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res. 1999;5:251–6.

    CAS  PubMed  Google Scholar 

  10. 10.

    Cheung E, Acevedo ML, Cole PA, Kraus WL. Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci USA. 2005;102:559–64.

    CAS  Article  Google Scholar 

  11. 11.

    Safe S. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm. 2001;62:231–52.

    CAS  Article  Google Scholar 

  12. 12.

    Luo M, Koh M, Feng J, Wu Q, Melamed P. Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol. 2005;25:7386–98.

    CAS  Article  Google Scholar 

  13. 13.

    Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, et al. Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol. 2010;30:3943–55.

    CAS  Article  Google Scholar 

  14. 14.

    Heldring N, Isaacs GD, Diehl AG, Sun M, Cheung E, Ranish JA, et al. Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol. 2011;25:564–74.

    CAS  Article  Google Scholar 

  15. 15.

    Lupien M, Meyer CA, Bailey ST, Eeckhoute J, Cook J, Westerling T, et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev. 2010;24:2219–27.

    CAS  Article  Google Scholar 

  16. 16.

    Tiniakos DG, Scott LE, Corbett IP, Piggott NH, Horne CH. Studies of c-jun oncogene expression in human breast using a new monoclonal antibody, NCL-DK4. J Pathol. 1994;172:19–26.

    CAS  Article  Google Scholar 

  17. 17.

    Zhao C, Qiao Y, Jonsson P, Wang J, Xu L, Rouhi P, et al. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Cancer Res. 2014;74:3983–94.

    CAS  Article  Google Scholar 

  18. 18.

    Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.

    CAS  Article  Google Scholar 

  19. 19.

    Zhu J, Zhao C, Kharman-Biz A, Zhuang T, Jonsson P, Liang N, et al. The atypical ubiquitin ligase RNF31 stabilizes estrogen receptor alpha and modulates estrogen-stimulated breast cancer cell proliferation. Oncogene. 2014;33:4340–51.

    CAS  Article  Google Scholar 

  20. 20.

    Zhang Y, Pu X, Shi M, Chen L, Song Y, Qian L, et al. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer. 2007;7:145.

    Article  Google Scholar 

  21. 21.

    Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43:27–33.

    CAS  Article  Google Scholar 

  22. 22.

    Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol. 1998;10:205–19.

    CAS  Article  Google Scholar 

  23. 23.

    Sun M, Isaacs GD, Hah N, Heldring N, Fogarty EA, Kraus WL. Estrogen regulates JNK1 genomic localization to control gene expression and cell growth in breast cancer cells. Mol Endocrinol. 2012;26:736–47.

    CAS  Article  Google Scholar 

  24. 24.

    Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008;132:958–70.

    CAS  Article  Google Scholar 

  25. 25.

    Kong SL, Li G, Loh SL, Sung WK, Liu ET. Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol Syst Biol. 2011;7:526.

    Article  Google Scholar 

  26. 26.

    Jia M, Andreassen T, Jensen L, Bathen TF, Sinha I, Gao H, et al. Estrogen receptor alpha promotes breast cancer by reprogramming choline metabolism. Cancer Res. 2016;76:5634–46.

    CAS  Article  Google Scholar 

  27. 27.

    Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  28. 28.

    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  Article  Google Scholar 

  29. 29.

    Ma C, Rong Y, Radiloff DR, Datto MB, Centeno B, Bao S, et al. Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev. 2008;22:308–21.

    Article  Google Scholar 

  30. 30.

    Schneider D, Kleeff J, Berberat PO, Zhu Z, Korc M, Friess H, et al. Induction and expression of betaig-h3 in pancreatic cancer cells. Biochim Biophys Acta. 2002;1588:1–6.

    CAS  Article  Google Scholar 

  31. 31.

    Shen Q, Bai Y, Chang KC, Wang Y, Burris TP, Freedman LP, et al. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer cistrome reveals coordination of LXR and AP1 signaling in keratinocytes. J Biol Chem. 2011;286:14554–63.

    CAS  Article  Google Scholar 

  32. 32.

    Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43:145–55.

    CAS  Article  Google Scholar 

  33. 33.

    Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481:389–93.

    CAS  Article  Google Scholar 

  34. 34.

    Ji Z, Donaldson IJ, Liu J, Hayes A, Zeef LA, Sharrocks AD. The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol. 2012;32:385–98.

    CAS  Article  Google Scholar 

  35. 35.

    Theodorou V, Stark R, Menon S, Carroll JS. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 2013;23:12–22.

    CAS  Article  Google Scholar 

  36. 36.

    Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.

    CAS  Article  Google Scholar 

  37. 37.

    Robinson JL, Hickey TE, Warren AY, Vowler SL, Carroll T, Lamb AD, et al. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene. 2014;33:5666–74.

    CAS  Article  Google Scholar 

  38. 38.

    Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.

    CAS  Article  Google Scholar 

  39. 39.

    Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA. 2016;113:E6600–9.

    CAS  Article  Google Scholar 

  40. 40.

    Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T, Yakir M, et al. Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells. Mol Cell. 2017;65:1122–35. e1125

    CAS  Article  Google Scholar 

  41. 41.

    Wright TM, Wardell SE, Jasper JS, Stice JP, Safi R, Nelson ER, et al. Delineation of a FOXA1/ERalpha/AGR2 regulatory loop that is dysregulated in endocrine therapy-resistant breast cancer. Mol Cancer Res. 2014;12:1829–39.

    CAS  Article  Google Scholar 

  42. 42.

    Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov. 2017;16:351–67.

    CAS  Article  Google Scholar 

  43. 43.

    Chen Y, Zheng Y, Foster DA. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene. 2003;22:3937–42.

    CAS  Article  Google Scholar 

  44. 44.

    Kharman-Biz A, Gao H, Ghiasvand R, Zhao C, Zendehdel K, Dahlman-Wright K. Expression of activator protein-1 (AP-1) family members in breast cancer. BMC Cancer. 2013;13:441.

    Article  Google Scholar 

  45. 45.

    Ween MP, Oehler MK, Ricciardelli C. Transforming growth Factor-Beta-Induced Protein (TGFBI)/(betaig-H3): a matrix protein with dual functions in ovarian cancer. Int J Mol Sci. 2012;13:10461–77.

    CAS  Article  Google Scholar 

  46. 46.

    Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, Vias M, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell. 2007;12:514–27.

    CAS  Article  Google Scholar 

  47. 47.

    Brunen D, Willems SM, Kellner U, Midgley R, Simon I, Bernards R. TGF-beta: an emerging player in drug resistance. Cell Cycle (Georget, Tex. 2013;12:2960–8.

    CAS  Article  Google Scholar 

  48. 48.

    Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.

    CAS  Article  Google Scholar 

  49. 49.

    Zhao C, Matthews J, Tujague M, Wan J, Strom A, Toresson G, et al. Estrogen receptor beta2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res. 2007;67:3955–62.

    CAS  Article  Google Scholar 

  50. 50.

    Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    CAS  Article  Google Scholar 

  51. 51.

    Dahlman-Wright K, Qiao Y, Jonsson P, Gustafsson JA, Williams C, Zhao C. Interplay between AP-1 and estrogen receptor alpha in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis. 2012;33:1684–91.

    CAS  Article  Google Scholar 

  52. 52.

    Hung MS, Chen IC, You L, Jablons DM, Li YC, Mao JH, et al. Knockdown of Cul4A increases chemosensitivity to gemcitabine through upregulation of TGFBI in lung cancer cells. Oncol Rep. 2015;34:3187–95.

    CAS  Article  Google Scholar 

Download references


The authors thank the Bioinformatic and Expression Analysis core facility at the Karolinska Institute ( for performing the Affymetrix and ChIP-seq assays and Hui Gao for critically reading the manuscript. This work was supported by scholarship from the China Scholarship Council, a PhD student grant (KID) from the Karolinska Institutet and grants from the Swedish Cancer Society (Cancerfonden).

Author contributions

HH and CZ performed experiments; RF prepared materials; IS and CZ analyzed data; HH, CZ, and KD interpreted results of experiments; HH, CZ, FY, and KD prepared figures; HH and CZ drafted manuscript; HH, L-AH, CZ, and KD edited and revised manuscript; all authors approved final version of manuscript; CZ and KD initiated and designed the study and supervised HH.

Author information



Corresponding author

Correspondence to Chunyan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, H., Sinha, I., Fan, R. et al. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 37, 2586–2600 (2018).

Download citation

Further reading


Quick links