Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2

Abstract

Epstein–Barr virus (EBV)-associated Burkitt’s lymphoma is characterised by the deregulation of c-Myc expression and a restricted viral gene expression pattern in which the EBV nuclear antigen-1 (EBNA1) is the only viral protein to be consistently expressed. EBNA1 is required for viral genome propagation and segregation during latency. However, it has been much debated whether the protein plays a role in viral-associated tumourigenesis. We show that the lymphomas which arise in EµEBNA1 transgenic mice are unequivocally linked to EBNA1 expression and that both C-Myc and Mdm2 deregulation are central to this process. Tumour cell survival is supported by IL-2 and there is a skew towards CD8-positive T cells in the tumour environment, while the immune check-point protein PD-L1 is upregulated in the tumours. Additionally, several isoforms of Mdm2 are upregulated in the EµEBNA1 tumours, with increased phosphorylation at ser166, an expression pattern not seen in Eµc-Myc transgenic tumours. Concomitantly, E2F1, Xiap, Mta1, C-Fos and Stat1 are upregulated in the tumours. Using four independent inhibitors of Mdm2 we demonstrate that the EµEBNA1 tumour cells are dependant upon Mdm2 for survival (as they are upon c-Myc) and that Mdm2 inhibition is not accompanied by upregulation of p53, instead cell death is linked to loss of E2F1 expression, providing new insight into the underlying tumourigenic mechanism. This opens a new path to combat EBV-associated disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sivachandran N, Thawe NN, Frappier L. Epstein-Barr virus nuclear antigen 1 replication and segregation functions in nasopharyngeal carcinoma cell lines. J Virol. 2011;85:10425–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Canaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, et al. EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci USA. 2009;106:22421–6.

    Article  PubMed  Google Scholar 

  3. Deschamps T, Quentin B, Leske DM, MacLeod R, Mompelat D, Tafforeau L. Epstein-Barr Virus Nuclear Antigen 1 aEBNA1a interacts with Regulator of Chromosome Condensation aRCC1a dynamically throughout the cell cycle. J Gen Virol. 2017;98:251–265.

    Article  PubMed  CAS  Google Scholar 

  4. Malik-Soni N, Frappier L. Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol. 2012;86:6999–7002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fåhraeus R. PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun. 2017;8:2103. in press

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996;15:3117–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci USA. 2003;100:14269–74.

    Article  PubMed  CAS  Google Scholar 

  8. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 2005;18:25–36.

    Article  PubMed  CAS  Google Scholar 

  9. O’Neil JD, Owen TJ, Wood VH, Date KL, Valentine R, Chukwuma MB, et al. Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol. 2008;89:2833–42.

    Article  PubMed  CAS  Google Scholar 

  10. Owen TJ, O’Neil JD, Dawson CW, Hu C, Chen X, Yao Y, et al. Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors. Mol Cancer. 2010;9:241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wood VH, O’Neil JD, Wei W, Stewart SE, Dawson CW, Young LS. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene. 2007;26:4135–47.

    Article  PubMed  CAS  Google Scholar 

  12. Tempera I, De Leo A, Kossenkov AV, Cesaroni M, Song H, Dawany N, et al. Identification of MEF2B, EBF1, and IL6R as direct gene targets of Epstein-Barr Virus (EBV) nuclear antigen 1 critical for EBV-infected B-lymphocyte survival. J Virol. 2015;90:345–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Drotar ME, Silva S, Barone E, Campbell D, Tsimbouri P, Jurvansu J, et al. Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. International journal of cancer. J Int du Cancer. 2003;106:388–95.

    Article  CAS  Google Scholar 

  14. Wilson JB, Levine AJ. The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Curr Top Microbiol Immunol. 1992;182:375–84.

    PubMed  CAS  Google Scholar 

  15. Tsimbouri P, Al-Sheikh Y, Drotar ME, Cushley W, Wilson JB. Epstein-Barr virus nuclear antigen-1 renders lymphocytes responsive to IL-2 but not IL-15 for survival. J Gen Virol. 2008;89:2821–32.

    Article  PubMed  CAS  Google Scholar 

  16. Tsimbouri P, Drotar ME, Coy JL, Wilson JB. bcl-xL and RAG genes are induced and the response to IL-2 enhanced in EµEBNA-1 transgenic mouse lymphocytes. Oncogene. 2002;21:5182–7.

    Article  PubMed  CAS  Google Scholar 

  17. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–90.

    Article  PubMed  CAS  Google Scholar 

  18. Li DQ, Divijendra Natha Reddy S, Pakala SB, Wu X, Zhang Y, Rayala SK, et al. MTA1 coregulator regulates p53 stability and function. J Biol Chem. 2009;284:34545–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Okoro DR, Rosso M, Bargonetti J. Splicing up mdm2 for cancer proteome diversity. Genes Cancer. 2012;3:311–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schuster K, Fan L, Harris LC. MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal. Mol Cancer Res. 2007;5:403–12.

    Article  PubMed  CAS  Google Scholar 

  21. Zheng T, Wang J, Zhao Y, Zhang C, Lin M, Wang X, et al. Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis. Nat Commun. 2013;4:2996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rosso M, Okoro DE, Bargonetti J. Splice variants of MDM2 in oncogenesis. Subcell Biochem. 2014;85:247–61.

    Article  PubMed  Google Scholar 

  23. Bill KL, Garnett J, Meaux I, Ma X, Creighton CJ, Bolshakov S, et al. SAR405838: a novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma. Clin Cancer Res. 2016;22:1150–60.

    Article  PubMed  CAS  Google Scholar 

  24. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gu L, Zhang H, Liu T, Zhou S, Du Y, Xiong J, et al. Discovery of dual inhibitors of MDM2 and XIAP for cancer treatment. Cancer Cell. 2016;30:623–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang H, Gu L, Liu T, Chiang KY, Zhou M. Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS ONE. 2014;9:e100960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kojima K, Burks JK, Arts J, Andreeff M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010;9:2545–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Renouf B, Hollville E, Pujals A, Tetaud C, Garibal J, Wiels J. Activation of p53 by MDM2 antagonists has differential apoptotic effects on Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt’s lymphoma cells. Leukemia. 2009;23:1557–63.

    Article  PubMed  CAS  Google Scholar 

  29. Kang MS, Lu H, Yasui T, Sharpe A, Warren H, Cahir-McFarland E, et al. Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci USA. 2005;102:820–5.

    Article  PubMed  CAS  Google Scholar 

  30. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203–20.

    Article  PubMed  CAS  Google Scholar 

  31. Xie N, Ma L, Zhu F, Zhao W, Tian F, Yuan F, et al. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress. Sci Rep. 2016;6:36171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, Zhang R. Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene. 2005;24:7238–47.

    Article  PubMed  CAS  Google Scholar 

  33. Tian X, Chen Y, Hu W, Wu M. E2F1 inhibits MDM2 expression in a p53-dependent manner. Cell Signal. 2011;23:193–200.

    Article  PubMed  CAS  Google Scholar 

  34. Volk EL, Fan L, Schuster K, Rehg JE, Harris LC. The MDM2-a splice variant of MDM2 alters transformation in vitro and the tumor spectrum in both Arf- and p53-null models of tumorigenesis. Mol Cancer Res. 2009;7:863–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zimber-Strobl U, Strobl L, Hofelmayr H, Kempkes B, Staege MS, Laux G, et al. EBNA2 and c-myc in B cell immortalization by Epstein-Barr virus and in the pathogenesis of Burkitt’s lymphoma. Curr Top Microbiol Immunol. 1999;246:315–20. discussion 321

    PubMed  CAS  Google Scholar 

  36. Wilson JB, Drotar ME. Considerations in generating transgenic mice. DNA, RNA, and protein extractions from tissues--rapid and effective blotting. Methods Mol Biol. 2001;174:361–77.

    PubMed  CAS  Google Scholar 

  37. Hannigan A, Wilson JB. Evaluation of LMP1 of Epstein-Barr virus as a therapeutic target by its inhibition. Mol Cancer. 2010;9:184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Achilli F, Boyle S, Kieran D, Chia R, Hafezparast M, Martin JE, et al. The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotroph Lateral Scler Other Mot Neuron Disord. 2005;6:111–4.

    Article  CAS  Google Scholar 

  39. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol. 1999;145:1119–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Daniela Quintana for contribution to cloning the line 26 junctional sequences, Goutham Subramanain for contribution to characterising the Rab28 genome region sequences in the line 26 and Maria Jackson who contributed to construction of the dnEBNA1 plasmids.

Author contributions

SA conducted FACS experiments, western analyses and drug assays, YA-S cloned the line 59 transgene and contributed to FISH, DC and MD contributed to mouse work and cloning the line 26 transgene, AH conducted the dnEBNA1 analyses, SB supervised and analysed the FISH experiment, PH, AK and PL contributed to the RNA data (array and seq) analyses, KA contributed to the drug analyses, MB conducted the PD-L1 analysis, PT contributed to transgene cloning, the array experiment and mouse work. JBW devised, supervised and procured funding for the study and wrote the manuscript.

Funding

Funding contribution to the work includes former LRF (now Bloodwise) grants. AH was supported by a Wellcome Trust PhD studentship while at GU, KA is supported by a PhD BBSRC studentship. SA is, and YA was, supported by Saudi Arabian PhD scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna B. Wilson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlQarni, S., Al-Sheikh, Y., Campbell, D. et al. Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene 37, 3998–4012 (2018). https://doi.org/10.1038/s41388-018-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0147-x

This article is cited by

Search

Quick links