Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer

Abstract

Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  2. Abou-Bakr AA, Eldweny HI. p16 expression correlates with basal-like triple-negative breast carcinoma. Ecancermedicalscience. 2013;7:317.

    PubMed  PubMed Central  Google Scholar 

  3. De Brot M, Soares FA, Stiepcich MM, Curcio VS, Gobbi H. Basal-like breast cancers: clinicopathological features and outcome. Rev Assoc Med Bras. 2009;55:529–34.

    Article  Google Scholar 

  4. Brouckaert O, Wildiers H, Floris G, Neven P. Update on triple-negative breast cancer: prognosis and management strategies. Int J Women’s Health. 2012;4:511–20.

    Google Scholar 

  5. Kuba S, Ishida M, Nakamura Y, Yamanouchi K, Minami S, Taguchi K, et al. Treatment and prognosis of breast cancer patients with brain metastases according to intrinsic subtype. Jpn J Clin Oncol. 2014;44:1025–31.

    Article  Google Scholar 

  6. Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol. 1990;8:103–12.

    Article  CAS  Google Scholar 

  7. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  Google Scholar 

  8. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  Google Scholar 

  9. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:1800–8.

    Article  CAS  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  Google Scholar 

  11. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

    Article  CAS  Google Scholar 

  12. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232–45.

    Article  CAS  Google Scholar 

  13. Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Davila-Gonzalez D, et al. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med. 2016;8:334ra353.

    Article  Google Scholar 

  14. Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.

    Article  CAS  Google Scholar 

  15. Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

    Article  CAS  Google Scholar 

  16. Fu XY. From PTK-STAT signaling to caspase expression and apoptosis induction. Cell Death Differ. 1999;6:1201–8.

    Article  CAS  Google Scholar 

  17. Guo C, Chang CC, Wortham M, Chen LH, Kernagis DN, Qin X, et al. Global identification of MLL2-targeted loci reveals MLL2’s role in diverse signaling pathways. Proc Natl Acad Sci USA. 2012;109:17603–8.

    Article  CAS  Google Scholar 

  18. Lo H-W, Hsu S-C, Ali-Seyed M, Gunduz M, Xia W, Wei Y, et al. Nuclear interaction of EGFR and STAT3 in the activation of iNOS/NO pathway. Cancer Cell. 2005;7:575–89.

    Article  CAS  Google Scholar 

  19. Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 2007;67:9066–76.

    Article  CAS  Google Scholar 

  20. Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res. 2008;14:6042–54.

    Article  CAS  Google Scholar 

  21. Lo HW, Cao X, Zhu H, Ali-Osman F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res. 2010;8:232–45.

    Article  CAS  Google Scholar 

  22. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell. 2005;7:575–89.

    Article  CAS  Google Scholar 

  23. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.

    Article  CAS  Google Scholar 

  24. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128:5201–12.

    CAS  PubMed  Google Scholar 

  25. Fiaschi M, Rozell B, Bergstrom A, Toftgard R. Development of mammary tumors by conditional expression of GLI1. Cancer Res. 2009;69:4810–7.

    Article  CAS  Google Scholar 

  26. Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988;332:371–4.

    Article  CAS  Google Scholar 

  27. Kinzler KW, Vogelstein B. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol. 1990;10:634–42.

    Article  CAS  Google Scholar 

  28. Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene. 2004;23:6156–62.

    Article  CAS  Google Scholar 

  29. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  CAS  Google Scholar 

  30. Zhu H, Lo H-W. The Human glioma-associated oncogene homolog 1 (GLI1) family of transcription factors in gene regulation and diseases. Curr Genom. 2010;11:238–45.

    Article  CAS  Google Scholar 

  31. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, et al. Identification of an amplified, highly expressed gene in a human glioma. Science (New York, NY). 1987;236:70–73.

    Article  CAS  Google Scholar 

  32. ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 2009;9:298.

    Article  Google Scholar 

  33. Xu L, Kwon YJ, Frolova N, Steg AD, Yuan K, Johnson MR, et al. Gli1 promotes cell survival and is predictive of a poor outcome in ERalpha-negative breast cancer. Breast Cancer Res Treat. 2009;123:59–71.

    Article  Google Scholar 

  34. Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F. A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res. 2009;69:6790–8.

    Article  CAS  Google Scholar 

  35. Cao X, Geradts J, Dewhirst MW, Lo HW. Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene. 2012;31:104–15.

    Article  CAS  Google Scholar 

  36. Carpenter RL, Paw I, Zhu H, Sirkisoon S, Xing F, Watabe K, et al. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis. Oncotarget. 2015;6:22653–65.

    Article  Google Scholar 

  37. Han W, Carpenter RL, Lo H-W. TGLI1 upregulates expression of VEGFR2 and VEGF-A, leading to a robust VEGF-VEGFR2 autocrine loop and cancer cell growth. Cancer Hallm. 2013;1:28–37.

    Article  Google Scholar 

  38. Zhu H, Carpenter RL, Han W, Lo HW. The GLI1 splice variant TGLI1 promotes glioblastoma angiogenesis and growth. Cancer Lett. 2014;343:51–61.

    Article  CAS  Google Scholar 

  39. Kameda C, Tanaka H, Yamasaki A, Nakamura M, Koga K, Sato N, et al. The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor-negative breast cancer. Anticancer Res. 2009;29:871–9.

    CAS  PubMed  Google Scholar 

  40. Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP, et al. Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther. 2006;5:674–83.

    Article  CAS  Google Scholar 

  41. Yang Q, Shen SS, Zhou S, Ni J, Chen D, Wang G, et al. STAT3 activation and aberrant ligand-dependent sonic hedgehog signaling in human pulmonary adenocarcinoma. Exp Mol Pathol. 2012;93:227–36.

    Article  CAS  Google Scholar 

  42. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA. 2010;107:6994–9.

    Article  CAS  Google Scholar 

  43. Shi T, Mazumdar T, Devecchio J, Duan ZH, Agyeman A, Aziz M, et al. cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells. PLoS ONE. 2010;5:e13054.

    Article  Google Scholar 

  44. Peterson KA, Nishi Y, Ma W, Vedenko A, Shokri L, Zhang X, et al. Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev. 2012;26:2802–16.

    Article  CAS  Google Scholar 

  45. Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.

    Article  CAS  Google Scholar 

  46. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54.

    Article  CAS  Google Scholar 

  47. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  Google Scholar 

  48. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  Google Scholar 

  49. Han W, Carpenter RL, Cao X, Lo HW. STAT1 gene expression is enhanced by nuclear EGFR and HER2 via cooperation with STAT3. Mol Carcinog. 2013;52:959–69.

    Article  CAS  Google Scholar 

  50. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437:894–7.

    Article  CAS  Google Scholar 

  51. Carpenter RL, Lo HW. STAT3 target genes relevant to human. Cancers (Basel). 2014;6:897–925.

    Article  CAS  Google Scholar 

  52. Milla LA, Gonzalez-Ramirez CN, Palma V. Sonic Hedgehog in cancer stem cells: a novel link with autophagy. Biol Res. 2012;45:223–30.

    Article  CAS  Google Scholar 

  53. Larive RM, Moriggi G, Menacho-Marquez M, Canamero M, de Alava E, Alarcon B, et al. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat Commun. 2014;5:3881.

    Article  CAS  Google Scholar 

  54. Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S, et al. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene. 1999;18:2107–16.

    Article  CAS  Google Scholar 

  55. Clark GJ, Kinch MS, Gilmer TM, Burridge K, Der CJ. Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene. 1996;12:169–76.

    CAS  PubMed  Google Scholar 

  56. Shi X, Sun X, Liu M, Li D, Aneja R, Zhou J. CEP70 protein interacts with gamma-tubulin to localize at the centrosome and is critical for mitotic spindle assembly. J Biol Chem. 2011;286:33401–8.

    Article  CAS  Google Scholar 

  57. Shi X, Yao Y, Wang Y, Zhang Y, Huang Q, Zhou J, et al. Cep70 regulates microtubule stability by interacting with HDAC6. FEBS Lett. 2015;589:1771–7.

    Article  CAS  Google Scholar 

  58. Shi X, Liu M, Li D, Wang J, Aneja R, Zhou J. Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration. Cell Cycle (Georgetown, TX). 2012;11:1554–63.

    Article  CAS  Google Scholar 

  59. Shi X, Li D, Wang Y, Liu S, Qin J, Wang J, et al. Discovery of centrosomal protein 70 as an important player in the development and progression of breast cancer. Am J Pathol. 2017;187:679–88.

    Article  CAS  Google Scholar 

  60. Kim VN, Kataoka N, Dreyfuss G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon–exon junction complex. Science (New York, NY). 2001;293:1832–6.

    Article  CAS  Google Scholar 

  61. Shum EY, Jones SH, Shao A, Dumdie J, Krause MD, Chan WK, et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell. 2016;165:382–95.

    Article  CAS  Google Scholar 

  62. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    Article  CAS  Google Scholar 

  63. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  Google Scholar 

  64. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–29.

    Article  CAS  Google Scholar 

  65. Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development. 1997;124:1313–22.

    CAS  PubMed  Google Scholar 

  66. Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial–mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 2015;34:546–57.

    Article  CAS  Google Scholar 

  67. Langlois B, Saupe F, Rupp T, Arnold C, van der Heyden M, Orend G, et al. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients. Oncotarget. 2014;5:10529–45.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge our colleagues Dr. Shadi Qasem for providing pathology support, and funding support for this project from NIH grants R01NS087169 (to H-WL), T32CA079448 (to SK, RLC), R01NS087169-3S1 (to H-WL and SRS), P30CA012197 (to BP; core facility), and DoD grant W81XWH-17-1-0044 (to H-WL).

Author contributions

SRS and RLC conducted most of the experiments, while TR, AA, AH, and AML provided technical assistance. GJ conducted ChIP-seq data analysis, while KW provided critical scientific input during revision. H-WL and SRS wrote the original and revised manuscripts. H-WL serves as the principal investigator of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Wen Lo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirkisoon, S.R., Carpenter, R.L., Rimkus, T. et al. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 37, 2502–2514 (2018). https://doi.org/10.1038/s41388-018-0132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0132-4

This article is cited by

Search

Quick links