Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Are there multiple cells of origin of Merkel cell carcinoma?

Abstract

Merkel cell carcinoma (MCC) is a rare but lethal cancer with the highest case-by-case fatality rate among all skin cancers. Eighty percent of cancers are associated with the Merkel cell polyomavirus (MCPyV). Twenty percent of MCCs are virus negative. Recent epidemiological data suggest that there are important, clinically relevant differences between these two subtypes of MCC. Recent studies in cancer genomics, mouse genetics, and virology experiments have transformed our understanding of MCC pathophysiology. Importantly, dramatic differences in the genetics of these two MCC subtypes suggest fundamental differences in their pathophysiology. We review these recent works and find that they provocatively suggest that MCPyV-positive and MCPyV-negative MCCs arise from two different cells of origin: the MCPyV-negative MCC from epidermal keratinocytes and the MCPyV-positive MCC from dermal fibroblasts. If true, this would represent the first cancer that we are aware of that evolves from cells of origin from two distinct germ layers: MCPyV-negative MCCs from ectodermal keratinocytes and MCPyV-positive MCCs from mesodermal fibroblasts. Future epigenetic experiments may prove valuable in confirming these distinct lineages for these MCC subtypes, especially for the clinical importance the cell of origin has on MCC treatment and prevention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1

    Harms KL, Healy MA, Nghiem P, Sober AJ, Johnson TM, Bichakjian CK, et al. Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the New 8th edition AJCC staging system. Ann Surg Oncol. 2016;23:3564–71.

    Article  Google Scholar 

  2. 2

    Elston D, Ferringer T, Ko CJ, Peckham S, High WA, DiCaudo DJ (2013) Dermatopathology. Elsevier Health Sciences, Philadelphia, PA, USA.

    Google Scholar 

  3. 3

    Lemasson G, Coquart N, Lebonvallet N, Boulais N, Galibert MD, Marcorelles P, et al. Presence of putative stem cells in Merkel cell carcinomas. J Eur Acad Dermatol Venereol. 2012;26:789–95.

    CAS  Article  Google Scholar 

  4. 4

    Visscher D, Cooper PH, Zarbo RJ, Crissman JD, Cutaneous neuroendocrine (Merkel cell) carcinoma: an immunophenotypic, clinicopathologic, and flow cytometric study. Mod Pathol. 1989;2:331–8.

    CAS  PubMed  Google Scholar 

  5. 5

    Zur Hausen A, Rennspiess D, Winnepenninckx V, Speel EJ, Kurz AK. Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. Cancer Res. 2013;73:4982–7.

    CAS  Article  Google Scholar 

  6. 6

    Sauer CM, Haugg AM, Chteinberg E, Rennspiess D, Winnepenninckx V, Speel EJ, et al. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. Crit Rev Oncol Hematol. 2017;116:99–105.

    CAS  Article  Google Scholar 

  7. 7

    Feng H, Shuda M, Chang Y, Moore PS, Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    CAS  Article  Google Scholar 

  8. 8

    Wendzicki JA, Moore PS, Chang Y. Large T and small T antigens of Merkel cell polyomavirus. Curr Opin Virol. 2015;11:38–43.

    CAS  Article  Google Scholar 

  9. 9

    Houben R, Dreher C, Angermeyer S, Borst A, Utikal J, Haferkamp S, et al. Mechanisms of p53 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T antigens. J Invest Dermatol. 2013;133:2453–60.

    CAS  Article  Google Scholar 

  10. 10

    Verhaegen ME, Mangelberger D, Harms PW, Vozheiko TD, Weick JW, Wilbert DM, et al. Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol. 2015;135:1415–24.

    CAS  Article  Google Scholar 

  11. 11

    Houben R, Adam C, Baeurle A, Hesbacher S, Grimm J, Angermeyer S, et al. An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer. 2012;130:847–56.

    CAS  Article  Google Scholar 

  12. 12

    Houben R, Shuda M, Weinkam R, Schrama D, Feng H, Chang Y, et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol. 2010;84:7064–72.

    CAS  Article  Google Scholar 

  13. 13

    Shuda M, Chang Y, Moore PS. Merkel cell polyomavirus-positive Merkel cell carcinoma requires viral small T-antigen for cell proliferation. J Invest Dermatol. 2014;134:1479–81.

    CAS  Article  Google Scholar 

  14. 14

    Schadendorf D, Lebbe C, Zur Hausen A, Avril MF, Hariharan S, Bharmal M, et al. Merkel cell carcinoma: Epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer. 2017;71: 53–69.

    Article  Google Scholar 

  15. 15

    Garneski KM, Warcola AH, Feng Q, Kiviat NB, Leonard JH, Nghiem P. Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol. 2009;129:246–8.

    CAS  Article  Google Scholar 

  16. 16

    Moshiri AS, Doumani R, Yelistratova L, Blom A, Lachance K, Shinohara MM, et al. Polyomavirus-negative merkel cell carcinoma: a more aggressive subtype based on analysis of 282 cases using multimodal tumor virus detection. J Invest Dermatol. 2017;137:819–27.

    CAS  Article  Google Scholar 

  17. 17

    Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.

    CAS  Article  Google Scholar 

  18. 18

    Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N Engl J Med. 2016;374:2542–52.

    CAS  Article  Google Scholar 

  19. 19

    Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2016;7:3403–15.

    Article  Google Scholar 

  20. 20

    Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, et al. The distinctive mutational spectra of polyomavirus-negative merkel cell carcinoma. Cancer Res. 2015;75:3720–7.

    CAS  Article  Google Scholar 

  21. 21

    Wong SQ, Waldeck K, Vergara IA, Schröder J, Madore J, Wilmott JS, et al. UV-associated mutations underlie the etiology of MCV-negative merkel cell carcinomas. Cancer Res. 2015;75:5228–34.

    CAS  Article  Google Scholar 

  22. 22

    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    CAS  Article  Google Scholar 

  23. 23

    Puram RV, Kowalczyk MS, de Boer CG, Schneider RK, Miller PG, McConkey M, et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016;165:303–16.

    CAS  Article  Google Scholar 

  24. 24

    Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105:4283–8.

    CAS  Article  Google Scholar 

  25. 25

    Choi J, Landrette SF, Wang T, Evans P, Bacchiocchi A, Bjornson R, et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res. 2014;27:253–62.

    CAS  Article  Google Scholar 

  26. 26

    Heath M, Jaimes N, Lemos B, Mostaghimi A, Wang LC, Penas PF, et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J Am Acad Dermatol. 2008;58:375–81.

    Article  Google Scholar 

  27. 27

    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    CAS  Article  Google Scholar 

  28. 28

    Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  Google Scholar 

  29. 29

    Gonzalez-Vela MD, Curiel-Olmo S, Derdak S, Beltran S, Santibanez M, Martinez N, et al. Shared oncogenic pathways implicated in both virus-positive and UV-induced merkel cell carcinomas. J Invest Dermatol. 2017;137:197–206.

    CAS  Article  Google Scholar 

  30. 30

    Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, et al. Merkel cells are essential for light-touch responses. Science. 2009;324:1580–2.

    CAS  Article  Google Scholar 

  31. 31

    Sibley RK, Dehner LP, Rosai J. Primary neuroendocrine (Merkel cell?) carcinoma of the skin. I. A clinicopathologic and ultrastructural study of 43 cases. Am J Surg Pathol. 1985;9:95–108.

    CAS  Article  Google Scholar 

  32. 32

    Moll I, Roessler M, Brandner JM, Eispert AC, Houdek P, Moll R. Human Merkel cells--aspects of cell biology, distribution and functions. Eur J Cell Biol. 2005;84:259–71.

    CAS  Article  Google Scholar 

  33. 33

    Tilling T, Moll I. Which are the cells of origin in merkel cell carcinoma? J Skin Cancer. 2012;2012:680410.

    Article  Google Scholar 

  34. 34

    Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol. 2009;187:91–100.

    Article  Google Scholar 

  35. 35

    Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010;70: 3877–83.

    CAS  Article  Google Scholar 

  36. 36

    Cui M, Augert A, Rongione M, Conkrite K, Parazzoli S, Nikitin AY, et al. PTEN is a potent suppressor of small cell lung cancer. Mol Cancer Res. 2014;12(5):654–9.

    CAS  Article  Google Scholar 

  37. 37

    Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL, et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell. 2008;3:416–28.

    CAS  Article  Google Scholar 

  38. 38

    Lumpkin EA, Collisson T, Parab P, Omer-Abdalla A, Haeberle H, Chen P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns. 2003;3: 389–95.

    CAS  Article  Google Scholar 

  39. 39

    Semenova EA, Nagel R, Berns A. Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes Dev. 2015;29:1447–62.

    CAS  Article  Google Scholar 

  40. 40

    Shuda M, Guastafierro A, Geng X, Shuda Y, Ostrowski SM, Lukianov S, et al. Merkel cell polyomavirus small T antigen induces cancer and embryonic merkel cell proliferation in a transgenic mouse model. PLoS ONE. 2015;10:e0142329.

    Article  Google Scholar 

  41. 41

    Verhaegen ME, Mangelberger D, Harms PW, Eberl M, Wilbert DM, Meireles J, et al. Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice. Cancer Res. 2017;77(12):3151–7.

    CAS  Article  Google Scholar 

  42. 42

    Spurgeon ME, Cheng J, Bronson RT, Lambert PF, DeCaprio JA. Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res. 2015;75:1068–79.

    CAS  Article  Google Scholar 

  43. 43

    Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S, et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun. 2016;7:12601.

    CAS  Article  Google Scholar 

  44. 44

    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–6.

    CAS  Article  Google Scholar 

  45. 45

    Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    CAS  Article  Google Scholar 

  46. 46

    Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373:1926–36.

    Article  Google Scholar 

  47. 47

    Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47:1011–9.

    CAS  Article  Google Scholar 

  48. 48

    South AP, Purdie KJ, Watt SA, Haldenby S, den Breems N, Dimon M, et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol. 2014;134:2630–8.

    CAS  Article  Google Scholar 

  49. 49

    Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest. 2012;122:464–72.

    CAS  Article  Google Scholar 

  50. 50

    Busam KJ, Jungbluth AA, Rekthman N, Coit D, Pulitzer M, Bini J, et al. Merkel cell polyomavirus expression in merkel cell carcinomas and its absence in combined tumors and pulmonary neuroendocrine carcinomas. Am J Surg Pathol. 2009;33:1378–85.

    Article  Google Scholar 

  51. 51

    Pulitzer MP, Brannon AR, Berger MF, Louis P, Scott SN, Jungbluth AA, et al. Cutaneous squamous and neuroendocrine carcinoma: genetically and immunohistochemically different from Merkel cell carcinoma. Mod Pathol. 2015;28:1023–32.

    Article  Google Scholar 

  52. 52

    Vieites B, Suarez-Penaranda JM, Delgado V, Vazquez-Veiga H, Varela J, Forteza J. Merkel cell carcinoma associated with in situ and invasive squamous cell carcinoma. Acta Derm Venereol. 2009;89:184–6.

    PubMed  Google Scholar 

  53. 53

    Woo SH, Stumpfova M, Jensen UB, Lumpkin EA, Owens DM. Identification of epidermal progenitors for the Merkel cell lineage. Development. 2010;137:3965–71.

    CAS  Article  Google Scholar 

  54. 54

    Liu W, Yang R, Payne AS, Schowalter RM, Spurgeon ME, Lambert PF, et al. Identifying the target cells and mechanisms of merkel cell polyomavirus infection. Cell Host Microbe. 2016;19:775–87.

    CAS  Article  Google Scholar 

  55. 55

    Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017;8:15183.

    CAS  Article  Google Scholar 

  56. 56

    Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63–67.

    CAS  Article  Google Scholar 

  57. 57

    Tschaharganeh DF, Xue W, Calvisi DF, Evert M, Michurina TV, Dow LE, et al. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell. 2014;158:579–92.

    CAS  Article  Google Scholar 

  58. 58

    Wikenheiser-Brokamp KA. Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development. 2004;131:4299–310.

    CAS  Article  Google Scholar 

  59. 59

    Syder AJ, Karam SM, Mills JC, Ippolito JE, Ansari HR, Farook V, et al. A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci USA. 2004;101:4471–6.

    CAS  Article  Google Scholar 

  60. 60

    Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate. 2003;55:219–37.

    Article  Google Scholar 

  61. 61

    Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.

    CAS  Article  Google Scholar 

  62. 62

    Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    CAS  Article  Google Scholar 

  63. 63

    Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun. 2015;6:6377.

    CAS  Article  Google Scholar 

  64. 64

    Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermatol. 2014;134:213–20.

    CAS  Article  Google Scholar 

  65. 65

    Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 2014;20:6582–92.

    CAS  Article  Google Scholar 

  66. 66

    McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126:508–19.

    CAS  Article  Google Scholar 

  67. 67

    Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC, et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 2012;22:196–207.

    CAS  Article  Google Scholar 

  68. 68

    Furney SJ, Turajlic S, Stamp G, Thomas JM, Hayes A, Strauss D, et al. The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res. 2014;27:835–8.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.J.C. is the Ruth K. Freinkel Assistant Professor of Dermatology. S.J.C. is supported by the NCI (K08 CA 191019). S.J.S. is the Harriet and Mary Zelencik Scientist in Children’s Cancer and Blood Diseases. The mouse work was supported by the NCI (R21 CA167104-01). The mice were maintained according to practices prescribed by the NIH at Stanford’s Research Animal Facility accredited by the AAPLAC (protocol 13565). We thank Dr. David MacPherson for the Pten mutant mice and Dr. Anton Berns for the Trp53 mutant mice. We would like to thank everyone in the Sage laboratory who helped in the generation and characterization of all the mutant mouse cohorts, specifically Margaret Zhu, Kim Tran, Garrett Seitz, and Anuradha Tathireddy, as well as Dr. Jinah Kim for help with the histopathology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sunshine, J.C., Jahchan, N.S., Sage, J. et al. Are there multiple cells of origin of Merkel cell carcinoma?. Oncogene 37, 1409–1416 (2018). https://doi.org/10.1038/s41388-017-0073-3

Download citation

Further reading

Search

Quick links