Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4

Abstract

There is growing interest in studying the molecular mechanisms of crosstalk between cancer metabolism and the cell cycle. 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a well-known glycolytic activator that plays an important role in tumorigenesis. We investigated whether PFKFB3 was directly involved in oncogenic signaling networks. Mass Spectrometry showed that PFKFB3 interacts with cyclin-dependent kinase (CDK) 4, which controls the transition from G1 phase to S phase of the cell cycle. Further analysis indicated that lysine 147 was a key site for the binding of PFKBFB3 to CDK4. PFKFB3 binding resulted in the accumulation of CDK4 protein by inhibiting ubiquitin proteasome degradation mediated by the heat shock protein 90-Cdc37–CDK4 complex. The proteasome-dependent degradation of CDK4 was accelerated by disrupting the interaction of PFKFB3 with CDK4 by mutating lysine (147) to alanine. Blocking PFKFB3–CDK4 interaction improved the therapeutic effect of FDA-approved CDK4 inhibitor palbociclib on breast cancer. These findings suggest that PFKFB3 is a hub for coordinating cell cycle and glucose metabolism. Combined targeting of PFKFB3 and CDK4 may be new strategy for breast cancer treatment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321:624–28.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram II, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;36:E359–86.

    Article  PubMed  Google Scholar 

  3. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  4. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381:561–79.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  5. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001;26: 30–5.

    CAS  Article  PubMed  Google Scholar 

  6. Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins. 2012;80:1143–53.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  7. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 2002;62:5881–7.

    CAS  PubMed  Google Scholar 

  8. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA. 1999;96: 3047–52.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  9. Dimco G, Knight RA, Latchman DS, Stephanou A. STAT1 interacts directly with cyclin D1/Cdk4 and mediates cell cycle arrest. Cell Cycle. 2010;9:4638–49.

    CAS  Article  PubMed  Google Scholar 

  10. Calvo MN, Bartrons R, Castano E, Perales JC, Navarro-Sabate A, Manzano A. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett. 2006;580:3308–14.

    CAS  Article  PubMed  Google Scholar 

  11. Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquiere B, Cauwenberghs S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48.

    CAS  Article  PubMed  Google Scholar 

  12. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284:24223–32.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  13. Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O’Neal J, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014;5:e1337.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  14. Klarer AC, O’Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab. 2014;2:2.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA 2nd, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013;12:1461–70.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  16. Li HM, Yang JG, Liu ZJ, Wang WM, Yu ZL, Ren JG, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36:7.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14:130–46.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  18. Braden WA, McClendon AK, Knudsen ES. Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene. 2008;27:7083–93.

    CAS  Article  PubMed  Google Scholar 

  19. Shi H, Chen S, Jin H, Xu C, Dong G, Zhao Q, et al. Downregulation of MSP58 inhibits growth of human colorectal cancer cells via regulation of the cyclin D1-cyclin-dependent kinase 4-p21 pathway. Cancer Sci. 2009;100:1585–90.

    CAS  Article  PubMed  Google Scholar 

  20. Jia Y, Domenico J, Swasey C, Wang M, Gelfand EW, Lucas JJ. Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells. PloS ONE. 2014;9:e97448.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, et al. Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res. 2010;70:2105–14.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  22. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res: J Am Assoc Cancer Res. 2011;17:1591–602.

    CAS  Article  Google Scholar 

  23. Yang Y, Ma B, Li L, Jin Y, Ben W, Zhang D, et al. CDK2 and CDK4 play important roles in promoting the proliferation of SKOV3 ovarian carcinoma cells induced by tumor-associated macrophages. Oncol Rep. 2014;31:2759–768.

    CAS  Article  PubMed  Google Scholar 

  24. Mao CQ, Xiong MH, Liu Y, Shen S, Du XJ, Yang XZ, et al. Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol Ther: J Am Soc Gene Ther. 2014;22:964–73.

    CAS  Article  Google Scholar 

  25. Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, et al. Elevated expression of CDK4 in lung cancer. J Transl Med. 2011;9:38.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  26. Heilmann AM, Perera RM, Ecker V, Nicolay BN, Bardeesy N, Benes CH, et al. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Res. 2014;74:3947–58.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  27. Li T, Zhao X, Mo Z, Huang W, Yan H, Ling Z, et al. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell Physiol Biochem. 2014;34:1351–8.

    CAS  Article  PubMed  Google Scholar 

  28. Gillam MP, Nimbalkar D, Sun L, Christov K, Ray D, Kaldis P, et al. MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene. 2015;34:932–8.

    CAS  Article  PubMed  Google Scholar 

  29. Wang H, Goode T, Iakova P, Albrecht JH, Timchenko NA. C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J. 2002;21:930–41.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. Lu J. Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. J Hematol & Oncol. 2015;8:98.

    Article  Google Scholar 

  31. Katsumi Y, Iehara T, Miyachi M, Yagyu S, Tsubai-Shimizu S, Kikuchi K, et al. Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression. Biochem Biophys Res Commun. 2011;413:62–8.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  32. Young RJ, Waldeck K, Martin C, Foo JH, Cameron DP, Kirby L, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27:590–600.

    CAS  Article  PubMed  Google Scholar 

  33. Cen L, Carlson BL, Schroeder MA, Ostrem JL, Kitange GJ, Mladek AC, et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro Oncol. 2012;14:870–81.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  34. Perez M, Munoz-Galvan S, Jimenez-Garcia MP, Marin JJ, Carnero A. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA. Oncotarget. 2015;6:40557–74.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Imbert-Fernandez Y, Clem BF, O’Neal J, Kerr DA, Spaulding R, Lanceta L, et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J Biol Chem. 2014;289: 9440–8.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  36. Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 2014;5:3480.

    Article  PubMed  Google Scholar 

  37. Reid MA, Lowman XH, Pan M, Tran TQ, Warmoes MO, Ishak Gabra MB, et al. IKKbeta promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes Dev. 2016;30:1837–51.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  38. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13:417–30.

    Article  PubMed  Google Scholar 

  39. Verba KA, Wang RY, Arakawa A, Liu Y, Shirouzu M, Yokoyama S, et al. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science. 2016;352:1542–7.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  40. Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 1996;10:1491–502.

    CAS  Article  PubMed  Google Scholar 

  41. Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell. 2006;23:697–707.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  42. Domenech E, Maestre C, Esteban-Martinez L, Partida D, Pascual R, Fernandez-Miranda G, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 2015;17:1304–16.

    CAS  Article  PubMed  Google Scholar 

  43. Cieslar-Pobuda A, Jain MV, Kratz G, Rzeszowska-Wolny J, Ghavami S, Wiechec E. The expression pattern of PFKFB3 enzyme distinguishes between induced-pluripotent stem cells and cancer stem cells. Oncotarget. 2015;6:29753–70.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Dai M, Zhang C, Ali A, Hong X, Tian J, Lo C, et al. CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer. Sci Rep. 2016;6:35383.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  45. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Erez A, DeBerardinis RJ. Metabolic dysregulation in monogenic disorders and cancer - finding method in madness. Nat Rev Cancer. 2015;15:440–8.

    CAS  Article  PubMed  Google Scholar 

  47. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004;16:819–30.

    CAS  Article  PubMed  Google Scholar 

  48. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 Phosphorylates histone h3 and promotes gene transcription and tumorigenesis. Cell. 2012;150:685–96.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  49. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34:1349–70.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  50. Vaughan CK, Mollapour M, Smith JR, Truman A, Hu B, Good VM, et al. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell. 2008;31:886–95.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  51. Smith JR, Clarke PA, de Billy E, Workman P. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene. 2009;28:157–69.

    CAS  Article  PubMed  Google Scholar 

  52. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98:859–69.

    CAS  Article  PubMed  Google Scholar 

  53. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16:25–35.

    CAS  Article  PubMed  Google Scholar 

  54. Roberts PJ, Bisi JE, Strum JC, Combest AJ, Darr DB, Usary JE, et al. Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst. 2012;104:476–87.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  55. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2016;36:2255–64.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lu Y, Wu Y, Feng X, Shen R, Wang JH, Fallahi M, et al. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. J Clin Invest. 2014;124:1672–84.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  58. Zhu Z, Zhao X, Zhao L, Yang H, Liu L, Li J, et al. p54(nrb)/NONO regulates lipid metabolism and breast cancer growth through SREBP-1A. Oncogene. 2016;35:1399–410.

    CAS  Article  PubMed  Google Scholar 

  59. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by research grants from National Natural Science Foundation of China (No. 81471687, 81530053, 81372195, 81471685, 81572719, 81601520).

Author contributions

JLiu, GH, and ZP designed the project; WJ, LZ, PM, HuY, JLi, and HaY performed the experiments; and WJ., ZP, LZ, PM, HuY, JLi, and HaY analyzed and interpreted the data; L.Z. and PM contributed materials; and JLiu, GH, ZP, and WZ prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Huang or Jianjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Wenzhi Jia and Xiaoping Zhao authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Zhao, X., Zhao, L. et al. Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4. Oncogene 37, 1685–1698 (2018). https://doi.org/10.1038/s41388-017-0072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0072-4

Further reading

Search

Quick links