Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer

Abstract

A fundamental principle in malignant tranformation is the ability of cancer cells to escape the naturally occurring cell-intrinsic responses to DNA damage. Tumors progress despite the accumulation of DNA lesions. However, the underlying mechanisms of this tolerance to genotoxic stress are still poorly characterized. Here, we show that replication stress occurs in Kras-driven murine lung adenocarcinomas, as well as in proliferating murine embryonic and adult tissues. We identify the transcriptional regulator AATF/CHE-1 as a key molecule to sustain proliferative tissues and tumor progression in parts by inhibiting p53-driven apoptosis in vivo. In an autochthonous Kras-driven lung adenocarcinoma model, deletion of Aatf delayed lung cancer formation predominantly in a p53-dependent manner. Moreover, targeting Aatf in existing tumors through a dual recombinase strategy caused a halt in tumor progression. Taken together, these data suggest that AATF may serve as a drug target to treat KRAS-driven malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15:2177–96.

    Article  CAS  Google Scholar 

  2. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  Google Scholar 

  3. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  Google Scholar 

  4. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21:245–55.

    Article  CAS  Google Scholar 

  5. Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 2013;14:563–80.

    Article  CAS  Google Scholar 

  6. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19.

    Article  CAS  Google Scholar 

  7. Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14:405–23.

    Article  CAS  Google Scholar 

  8. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017. https://www.ncbi.nlm.nih.gov/pubmed/28187286. Accessed 14 Mar 2017.

  9. Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.

    Article  CAS  Google Scholar 

  10. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–68.

    Article  CAS  Google Scholar 

  11. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature. 2001;411:102–7.

    Article  CAS  Google Scholar 

  12. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell. 2005;17:37–48.

    Article  CAS  Google Scholar 

  13. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007;11:175–89.

    Article  CAS  Google Scholar 

  14. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MATM, Wang X, et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell. 2010;40:34–49.

    Article  CAS  Google Scholar 

  15. Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J. 2007;26:2005–14.

    Article  CAS  Google Scholar 

  16. Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet Tig. 2012;28:128–36.

    Article  CAS  Google Scholar 

  17. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6:909–23.

    Article  CAS  Google Scholar 

  18. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  Google Scholar 

  19. Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci. 2015;128:607–20.

    Article  CAS  Google Scholar 

  20. Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660.

    Article  CAS  Google Scholar 

  21. Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15:276–89.

    Article  CAS  Google Scholar 

  22. Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J. 2000;14:904–12.

    Article  CAS  Google Scholar 

  23. Bruno T, De Nicola F, Iezzi S, Lecis D, D’Angelo C, Di Padova M, et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell. 2006;10:473–86.

    Article  CAS  Google Scholar 

  24. Höpker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T, et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 2012;31:3961–75.

    Article  Google Scholar 

  25. Thomas T, Voss AK, Petrou P, Gruss P. The murine gene, traube, is essential for the growth of preimplantation embryos. Dev Biol. 2000;227:324–42.

    Article  CAS  Google Scholar 

  26. Höpker K, Hagmann H, Khurshid S, Chen S, Schermer B, Benzing T, et al. Putting the brakes on p53-driven apoptosis. Cell Cycle Georget Tex. 2012;11:4122–8.

    Article  Google Scholar 

  27. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1 modulates the decision between cell cycle arrest and apoptosis by its binding to p53. Cell Death Dis. 2015;6:e1764.

    Article  CAS  Google Scholar 

  28. Guo Q, Xie J. AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4. J Biol Chem. 2004;279:4596–603.

    Article  CAS  Google Scholar 

  29. Xie J, Guo. AATF protects neural cells against oxidative damage induced by amyloid β-peptide. Neurobiol Dis. 2004;16:150–7.

    Article  CAS  Google Scholar 

  30. Bruno T, Desantis A, Bossi G, Di Agostino S, Sorino C, De Nicola F, et al. Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation. Cancer Cell. 2010 ;18:122–34.

    Article  CAS  Google Scholar 

  31. Kaul D. Cellular AATF gene: armour against HIV-1. Indian J Biochem Biophys. 2007;44:276–8.

    CAS  PubMed  Google Scholar 

  32. Bacalini MG, Tavolaro S, Peragine N, Marinelli M, Santangelo S, Del Giudice I, et al. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol. 2012;40:197–206.e1.

    Article  CAS  Google Scholar 

  33. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  Google Scholar 

  34. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214–30.

    Article  CAS  Google Scholar 

  35. De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414.

    Article  Google Scholar 

  36. Dietlein F, Kalb B, Jokic M, Noll EM, Strong A, Tharun L, et al. A Synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant. Cancer Cell. 2015;162:146–59.

    CAS  Google Scholar 

  37. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

    Article  CAS  Google Scholar 

  38. Jokić M, Vlašić I, Rinneburger M, Klümper N, Spiro J, Vogel W, et al. Ercc1 deficiency promotes tumorigenesis and increases cisplatin sensitivity in a Tp53 context-specific manner. Mol Cancer Res Mcr. 2016;14:1110–23.

    Article  Google Scholar 

  39. Hafner M, Wenk J, Nenci A, Pasparakis M, Scharffetter-Kochanek K, Smyth N, et al. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein: K14Cre in oocytes. Genesis. 2004;38:176–81.

    Article  CAS  Google Scholar 

  40. Hardman MJ, Sisi P, Banbury DN, Byrne C. Patterned acquisition of skin barrier function during development. Development. 1998;125:1541–52.

    CAS  PubMed  Google Scholar 

  41. Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell. 2002;2:387–99.

    Article  CAS  Google Scholar 

  42. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genes N Y N 2000. 2007;45:593–605.

    CAS  Google Scholar 

  43. Schmitt A, Knittel G, Welcker D, Yang T-P, George J, Nowak M, et al. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res. 2017;77: 3040–56.

    Article  CAS  Google Scholar 

  44. Justilien V, Ali SA, Jamieson L, Yin N, Cox AD, Der CJ, et al. Ect2-dependent rRNA synthesis is required for KRAS-TRP53-driven lung adenocarcinoma. Cancer Cell. 2017;31:256–69.

    Article  CAS  Google Scholar 

  45. Bruno T, Iezzi S, Fanciulli M. Che-1/AATF: A critical cofactor for both wild-type- and mutant-p53 proteins. FrontOncol. 2016;6. http://journal.frontiersin.org/article/10.3389/fonc.2016.00034/abstract. Accessed 15 Feb 2017.

  46. Bruno T, Iezzi S, De Nicola F, Di Padova M, Desantis A, Scarsella M, et al. Che-1 activates XIAP expression in response to DNA damage. Cell Death Differ. 2008;15:515–20.

    Article  CAS  Google Scholar 

  47. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  CAS  Google Scholar 

  48. Clinical Lung Cancer Genome Project (CLCGP), Network genomic medicine (NGM). A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5:209ra153.

  49. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  CAS  Google Scholar 

  50. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.

    Article  Google Scholar 

  51. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21:998–1012.

    Article  CAS  Google Scholar 

  52. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275:1649–52.

    Article  CAS  Google Scholar 

  53. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 1999;274:7936–40.

    Article  CAS  Google Scholar 

  54. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31: 1117–29.

    Article  CAS  Google Scholar 

  55. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601–16.

    Article  CAS  Google Scholar 

  56. Fikaris AJ, Lewis AE, Abulaiti A, Tsygankova OM, Meinkoth JL. Ras triggers ataxia-telangiectasia-mutated and Rad-3-related activation and apoptosis through sustained mitogenic signaling. J Biol Chem. 2006 ;281:34759–67.

    Article  CAS  Google Scholar 

  57. Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res J Am Assoc Cancer Res. 2015;21:1243–7.

    Article  CAS  Google Scholar 

  58. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5.

    Article  CAS  Google Scholar 

  59. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  Google Scholar 

  61. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med. 2014;20:1340–7.

    Article  Google Scholar 

  62. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224: 213–32.

    Article  CAS  Google Scholar 

  63. Ollion J, Cochennec J, Loll F, Escudé C, Boudier T, TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinforma Oxf Engl. 2013;29:1840–1.

    Article  CAS  Google Scholar 

  64. Durkin ME, Qian X, Popescu NC, Lowy DR, Isolation of mouse embryo fibroblasts. Bio-Protoc. 2013;3(18):e908

    Article  Google Scholar 

  65. Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 2009;23:1895–909.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Alexandra Florin, Marion Müller and Ursula Rommerscheidt-Fuß, Institute of Pathology and Martyna Brütting, CECAD, University Hospital Cologne, for their outstanding technical support.

Funding

This work was supported by Volkswagenstiftung (Lichtenberg Program to HCR), Deutsche Forschungsgemeinschaft (KFO-286 to HCR, SFB-829 to HCR, CN and TB, SCHE1562/2 to BS, BE2212 to TB), Bundesministerium für Bildung und Forschung (SMOOSE to HCR, SYBACOL to TB), German federal state North Rhine Westphalia (NRW) as part of the EFRE initiative (grant LS-1-1-030a to HCR), Else Kröner-Fresenius Stiftung (EKFS-2014-A06 to HCR), Deutsche Krebshilfe (111724, HCR), University of Cologne (Köln Fortune Program to KH), Cologne Cardiovascular Research Center (Graduate Program to MJ), Cologne Graduate School of Ageing Research (to SK), CECAD Research Center Cologne Maternity Leave Fellowship to DW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Christian Reinhardt or Thomas Benzing.

Ethics declarations

Conflict of interest

HCR received consulting fees from Abbvie, Vertex, AstraZeneca and Merck. HCR received research funding from Gilead. All other authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welcker, D., Jain, M., Khurshid, S. et al. AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer. Oncogene 37, 1503–1518 (2018). https://doi.org/10.1038/s41388-017-0054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0054-6

This article is cited by

Search

Quick links