Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis


Development of human tumors is driven by accumulation of alterations in tumor suppressor genes and oncogenes in cells. The POU1F1 transcription factor (also known Pit-1) is expressed in the mammary gland and its overexpression induces profound phenotypic changes in proteins involved in breast cancer progression. Patients with breast cancer and elevated expression of Pit-1 show a positive correlation with the occurrence of distant metastasis and poor overall survival. However, some mediators of Pit-1 actions are still unknown. Here, we show that CXCR4 chemokine receptor and its ligand CXCL12 play a critical role in the pro-tumoral process induced by Pit-1. We found that Pit-1 increases mRNA and protein in both CXCR4 and CXCL12. Knock-down of CXCR4 reduces tumor growth and spread of Pit-1 overexpressing cells in a zebrafish xenograft model. Furthermore, we described for the first time pro-angiogenic effects of Pit-1 through the CXCL12-CXCR4 axis, and that extravasation of Pit-1 overexpressing breast cancer cells is strongly reduced in CXCL12-deprived target tissues. Finally, in breast cancer patients, expression of Pit-1 in primary tumors was found to be positively correlated with CXCR4 and CXCL12, with specific metastasis in liver and lung, and with clinical outcome. Our results suggest that Pit-1-CXCL12-CXCR4 axis could be involved in chemotaxis guidance during the metastatic process, and may represent prognostic and/or therapeutic targets in breast tumors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Lambert AW, Pattabiraman DR, Weinberg RA, Emerging biological principles of metastasis. Cell. 2017;68:670–91.

    Article  Google Scholar 

  2. 2.

    Valastyan S, Weinberg RA, Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    CAS  Article  Google Scholar 

  3. 3.

    Nguyen DXl, Bos PD, Massagué J, Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.

    CAS  Article  Google Scholar 

  4. 4.

    Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    Article  Google Scholar 

  5. 5.

    Zlotnik A, Burkhardt AM, Homey B, Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11:597–606.

    CAS  Article  Google Scholar 

  6. 6.

    Lazennec G, Richmond A, Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133–44.

    CAS  Article  Google Scholar 

  7. 7.

    Burger JA, Kipps TJ, CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    CAS  Article  Google Scholar 

  8. 8.

    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64:8604–12.

    CAS  Article  Google Scholar 

  9. 9.

    Bachelder RE, Wendt MA, Mercurio AM, Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62:7203–06.

    CAS  PubMed  Google Scholar 

  10. 10.

    Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W, CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26.

    CAS  Article  Google Scholar 

  11. 11.

    Lefevre C, Imagawa M, Dana S, Grindlay J, Bodner M, Karin M, Tissue specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO J. 1987;6:971–81.

    CAS  Article  Google Scholar 

  12. 12.

    Nelson C, Albert VR, Elsholtz HP, Lu LI-W, Rosenfeld MG, Activation of cell specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science. 1988;239:1400–05.

    CAS  Article  Google Scholar 

  13. 13.

    Gil-Puig C, Blanco M, Garcia-Caballero T, Segura C, Perez-Fernandez R, Pit-1/GHF-1 and GH expression in MCF-7 human breast adenocarcinoma cell line. J Endocrinol. 2002;173:161–7.

    CAS  Article  Google Scholar 

  14. 14.

    Gil-Puig C, Seoane S, Blanco M, Macia M, Garcia-Caballero T, Segura C, et al. Pit-1 is expressed in normal and tumoral human breast and regulates growth hormone secretion and cell proliferation. Eur J Endocrinol. 2005;153:335–44.

    CAS  Article  Google Scholar 

  15. 15.

    Sendon-Lago J, Seoane S, Eiro N, Bermudez MA, Macia M, Garcia-Caballero T, et al. Cancer progression by breast tumors with Pit-1-overexpression is blocked by inhibition of metalloproteinase (MMP)-13. Breast Cancer Res. 2014;16:505.

    Article  Google Scholar 

  16. 16.

    Ben-Batalla I, Seoane S, Garcia-Caballero T, Gallego R, Macia M, Gonzalez LO, et al. Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. J Clin Invest. 2010;120:4289–302.

    CAS  Article  Google Scholar 

  17. 17.

    Gao Z, Xue K, Zhang L, Wei M, Over-expression of POU class 1 homeobox 1 transcription factor (Pit-1) predicts poor prognosis for breast cancer patients. Med Sci Monit. 2016;22:4121–25.

    CAS  Article  Google Scholar 

  18. 18.

    Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  19. 19.

    Lefort S, Thuleau A, Kieffer Y, Sirven P, Bieche I, Marangoni E, et al. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene. 2017;36:1211–22.

    CAS  Article  Google Scholar 

  20. 20.

    Chen HW, Du CW, Wei XL, Khoo US, Zhang GJ, Cytoplasmic CXCR4 high-expression exhibits distinct poor clinicopathological characteristics and predicts poor prognosis in triple-negative breast cancer. Curr Mol Med. 2013;13:410–16.

    CAS  PubMed  Google Scholar 

  21. 21.

    DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ, Defining the origins and evolution of the chemokine/chemokine receptor system. J Immunol. 2006;176:401–15.

    CAS  Article  Google Scholar 

  22. 22.

    Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, et al. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002;111:647–59.

    CAS  Article  Google Scholar 

  23. 23.

    Tiveron M-C, Cremer H, CXCL12/CXCR4 signaling in neuronal cell migration. Curr Opin Neurobiol. 2008;18:237–44.

    CAS  Article  Google Scholar 

  24. 24.

    Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y, Gothilf Y, Cxcl12a-Cxcr4b signaling is important for proper development of the forebrain GnRH system in zebrafish. Gen Comp Endocrinol. 2010;165:262–68.

    CAS  Article  Google Scholar 

  25. 25.

    Nica G, Herzog W, Sonntag C, Hammerschmidt M. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism. Mol Endocrinol. 2004;18:1196–209.

    CAS  Article  Google Scholar 

  26. 26.

    Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T, et al. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech. 2016;9:141–53.

    CAS  Article  Google Scholar 

  27. 27.

    Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res. 2009;155:231–6.

    CAS  Article  Google Scholar 

  28. 28.

    Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ, et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer. 2011;129:225–32.

    CAS  Article  Google Scholar 

  29. 29.

    Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219–30.

    CAS  Article  Google Scholar 

  30. 30.

    Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359:716–22.

    CAS  Article  Google Scholar 

  31. 31.

    Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G, Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood. 2002;99:2703–11.

    CAS  Article  Google Scholar 

  32. 32.

    Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005;65:465–72.

    CAS  PubMed  Google Scholar 

  33. 33.

    Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007;20:605–18.

    Article  Google Scholar 

  34. 34.

    Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D, Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci Usa. 2013;110:E1291–300.

    CAS  Article  Google Scholar 

  35. 35.

    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    CAS  Article  Google Scholar 

  36. 36.

    Kim J, Mori T, Chen SL, Amersi FF, Martinez SR, Kuo C, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg. 2006;244:113–20.

    Article  Google Scholar 

  37. 37.

    Peixoto P, Liu Y, Depauw S, Hildebrand M-P, Boykin DW, Bailly C, et al. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication. Nucl Acids Res. 2008;36:3341–53.

    CAS  Article  Google Scholar 

  38. 38.

    Seoane S, Perez-Fernandez R, The vitamin D receptor represses transcription of the pituitary transcription factor Pit-1 gene without involvement of the retinoid X receptor. Mol Endocrinol. 2006;20:735–48.

    CAS  Article  Google Scholar 

  39. 39.

    Seoane S, Arias E, Sigueiro R, Sendon-Lago J, Martinez-Ordoñez A, Castelao E, et al. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment. Oncotarget. 2015;16:14456–71.

    Google Scholar 

  40. 40.

    Scala S, Molecular pathways: targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21:4278–85.

    CAS  Article  Google Scholar 

  41. 41.

    Xu C, Zhao H, Chen H, Yao Q, CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther. 2015;9:4953–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Eiró N, Fernandez-Garcia B, Vázquez J, Del Casar JM, González LO, Vizoso FJ, A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. Oncoimmunology. 2015;4:e992222.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zudaire E, Gambardella L, Kurcz C, Vermeren S, A computational tool for quantitative analysis of vascular networks. PLoS One. 2011;6:e27385.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported by Ministerio de Economía y Competividad (SAF2015-69221-R, MINECO/FEDER), and Conselleria de Cultura, Educación e Ordenacion Universitaria (GPC2014/001) to RP-F, and Ministerio de Educacion, FPU14/00548 to AM-O. We want to particularly acknowledge the patients and the BioBank Complejo Hospitalario Universitario de Santiago (CHUS) (PT17/0015/0002), integrated in the Spanish National Biobanks Network for its collaboration, to P. Peñas for providing biological samples, and to M. Fraile for help us with histological analyses.

Author information



Corresponding author

Correspondence to Roman Perez-Fernandez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Anxo Martinez-Ordoñez and Samuel Seoane contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez-Ordoñez, A., Seoane, S., Cabezas, P. et al. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene 37, 1430–1444 (2018).

Download citation

Further reading


Quick links