Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer

Abstract

Triple-negative breast cancer (TNBC) has high rates of local recurrence and distant metastasis, partially due to its high invasiveness. The Forkhead box C1 (FOXC1) transcription factor has been shown to be specifically overexpressed in TNBC and associated with poor clinical outcome. How TNBC’s high invasiveness is driven by FOXC1 and its downstream targets remains poorly understood. In the present study, pathway-specific PCR array assays revealed that WNT5A and matrix metalloproteinase-7 (MMP7) were upregulated by FOXC1 in TNBC cells. Interestingly, WNT5A mediates the upregulation of MMP7 by FOXC1 and the WNT5A-MMP7 axis is essential for FOXC1-induced invasiveness of TNBC cells in vitro. Xenograft models showed that the lung extravasation and metastasis of FOXC1-overexpressing TNBC cells were attenuated by knocking out WNT5A, but could be restored by MMP7 overexpression. Mechanistically, FOXC1 can bind directly to the WNT5A promoter region to activate its expression. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), coupled with mass spectrometry, identified FOXC1-interacting proteins including a group of heterogeneous nuclear ribonucleoproteins involved in WNT5A transcription induction. Finally, we found that WNT5A activates NF-κB signaling to induce MMP7 expression. Collectively, these data demonstrate a FOXC1-elicited non-canonical WNT5A signaling mechanism comprising NF-κB and MMP7 that is essential for TNBC cell invasiveness, thereby providing implications toward developing an effective therapy for TNBC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    CAS  Article  Google Scholar 

  2. 2.

    Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.

    CAS  Article  Google Scholar 

  3. 3.

    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    CAS  Article  Google Scholar 

  4. 4.

    Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, et al. β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011;24:209–31.

    CAS  Article  Google Scholar 

  5. 5.

    Xu J, Prosperi JR, Choudhury N, Olopade OI, Goss KH. β-catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One. 2015;10:e0117097.

    Article  Google Scholar 

  6. 6.

    Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B, et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst. 2015;107:djv148.

    Article  Google Scholar 

  7. 7.

    Han B, Audeh W, Jin Y, Bagaria S, Cui X. Biology and treatment of basal-like breast cancer. In: Schatten H, editors. Molecular biology of breast cancer. New York: Springer-Humana Press; 2013. pp 91–109. Chapter 5

    Chapter  Google Scholar 

  8. 8.

    Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010;107:15449–54.

    CAS  Article  Google Scholar 

  9. 9.

    Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K, et al. FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer. Cell Rep. 2015;13:1046–58.

    CAS  Article  Google Scholar 

  10. 10.

    Sizemore ST, Keri RA. The forkhead box transcription factor FOXC1 promotes breast cancer invasion by inducing matrix metalloprotease 7 (MMP7) expression. J Biol Chem. 2012;287:24631–40.

    CAS  Article  Google Scholar 

  11. 11.

    Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 2014;25:210–25.

    CAS  Article  Google Scholar 

  12. 12.

    Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009;15:4649–64.

    CAS  Article  Google Scholar 

  13. 13.

    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    CAS  Article  Google Scholar 

  14. 14.

    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    CAS  Article  Google Scholar 

  15. 15.

    Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA. 2006;103:5454–9.

    CAS  Article  Google Scholar 

  16. 16.

    Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 1994;13:5002–12.

    CAS  Article  Google Scholar 

  17. 17.

    Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun. 2013;439:132–6.

    CAS  Article  Google Scholar 

  18. 18.

    Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. 2015;5:41.

    Article  Google Scholar 

  19. 19.

    Weng MT, Luo J. The enigmatic ERH protein: its role in cell cycle, RNA splicing and cancer. Protein Cell. 2013;4:807–12.

    CAS  Article  Google Scholar 

  20. 20.

    Bunch H, Calderwood SK. TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol. 2015;16:14.

    Article  Google Scholar 

  21. 21.

    Mazurek A, Luo W, Krasnitz A, Hicks J, Powers RS, Stillman B. DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Discov. 2012;2:812–25.

    CAS  Article  Google Scholar 

  22. 22.

    Han SP, Tang YH, Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J. 2010;430:379–92.

    CAS  Article  Google Scholar 

  23. 23.

    Jang M, Park BC, Kang S, Chi SW, Cho S, Chung SJ, et al. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene. 2009;28:1529–36.

    CAS  Article  Google Scholar 

  24. 24.

    Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol. 2010;20:346–54.

    CAS  Article  Google Scholar 

  25. 25.

    Klemm F, Bleckmann A, Siam L, Chuang HN, Rietkotter E, Behme D, et al. beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis. 2011;32:434–42.

    CAS  Article  Google Scholar 

  26. 26.

    Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1:279–88.

    CAS  Article  Google Scholar 

  27. 27.

    Wang J, Ray PS, Sim MS, Zhou XZ, Lu KP, Lee AV, et al. FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene. 2012;31:4798–802.

    CAS  Article  Google Scholar 

  28. 28.

    Zhao Y, Wang CL, Li RM, Hui TQ, Su YY, Yuan Q, et al. Wnt5a promotes inflammatory responses via nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells. J Biol Chem. 2014;289:21028–39.

    CAS  Article  Google Scholar 

  29. 29.

    Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, et al. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget. 2015;6:9140–59.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Phoomak C, Vaeteewoottacharn K, Sawanyawisuth K, Seubwai W, Wongkham C, Silsirivanit A, et al. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-kappaB. Sci Rep. 2016;6:27853.

    CAS  Article  Google Scholar 

  31. 31.

    Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 2014;159:844–56.

    CAS  Article  Google Scholar 

  32. 32.

    Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    CAS  Article  Google Scholar 

  33. 33.

    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    CAS  Article  Google Scholar 

  34. 34.

    Kim GE, Lee JS, Choi YD, Lee KH, Lee JH, Nam JH, et al. Expression of matrix metalloproteinases and their inhibitors in different immunohistochemical-based molecular subtypes of breast cancer. BMC Cancer. 2014;14:959.

    Article  Google Scholar 

  35. 35.

    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    CAS  Article  Google Scholar 

  36. 36.

    Fujita T, Fujii H. Identification of proteins associated with an IFNgamma-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One. 2014;9:e103084.

    Article  Google Scholar 

  37. 37.

    Morley S, You S, Pollan S, Choi J, Zhou B, Hager MH, et al. Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Rep. 2015;5:12136.

    CAS  Article  Google Scholar 

  38. 38.

    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    CAS  Article  Google Scholar 

  39. 39.

    Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76:4193–201.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (CA151610), the Avon Foundation for Women (02-2014-063), and David Salomon Translational Breast Cancer Research Fund to Xiaojiang Cui, and the Fashion Footwear Charitable Foundation of New York, Inc., the Entertainment Industry Foundation, the Margie and Robert E. Petersen Foundation, and the Linda and Jim Lippman Research Fund to Armando Giuliano.

Author information

Affiliations

Authors

Contributions

Conception and design by BC Han and XJ Cui. Development of methodology by BC Han, B Zhou, H Tanaka, W Yang, and XJ Cui. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.) by BC Han, B Zhou, BW Gao, YL Xu, W Yang, and XJ Cui. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis) by BC Han, B Zhou, Y Qu, S Chung, H Tanaka, W Yang, AE Giuliano, and XJ Cui. Writing, review, and/or revision of the manuscript by BC Han, B Zhou, Y Qu, BW Gao, S Chung, H Tanaka, W Yang, AE Giuliano, and X Cui. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases) by BC Han, B Zhou, Y Qu, BW Gao, S Chung, W Yang, and XJ Cui. Study supervision by BC Han, AE Giuliano, and XJ Cui.

Corresponding author

Correspondence to Xiaojiang Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, B., Zhou, B., Qu, Y. et al. FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene 37, 1399–1408 (2018). https://doi.org/10.1038/s41388-017-0021-2

Download citation

Further reading

Search

Quick links