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Myricetin alleviates diabetic cardiomyopathy by regulating gut
microbiota and their metabolites
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BACKGROUND: The gut microbiota is involved in the pathogenesis of diabetic cardiomyopathy (DCM). Myricetin protects cardiac
function in DCM. However, the low bioavailability of myricetin fails to explain its pharmacological mechanisms thoroughly. Research
has shown that myricetin has a positive effect on the gut microbiota. We hypothesize that myricetin improves the development of
DCM via regulating gut microbiota.
METHODS: DCM mice were induced with streptozotocin and fed a high-fat diet, and then treated with myricetin by gavage and
high-fat diet for 16 weeks. Indexes related to gut microbiota composition, cardiac structure, cardiac function, intestinal barrier
function, and inflammation were detected. Moreover, the gut contents were transplanted to DCM mice, and the effect of fecal
microbiota transplantation (FMT) on DCM mice was assessed.
RESULTS: Myricetin could improve cardiac function in DCM mice by decreasing cardiomyocyte hypertrophy and interstitial fibrosis.
The composition of gut microbiota, especially for short-chain fatty acid-producing bacteria involving Roseburia, Faecalibaculum,
and Bifidobacterium, was more abundant by myricetin treatment in DCM mice. Myricetin increased occludin expression and the
number of goblet cells in DCM mice. Compared with DCM mice unfed with gut content, the cardiac function, number of goblet
cells, and expression of occludin in DCM mice fed by gut contents were elevated, while cardiomyocyte hypertrophy and TLR4/
MyD88 pathway-related proteins were decreased.
CONCLUSIONS: Myricetin can prevent DCM development by increasing the abundance of beneficial gut microbiota and restoring
the gut barrier function.
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INTRODUCTION
It is expected that the number of people with diabetes will rise to
400 million in 2030, and ~80% of them will experience
cardiovascular disease [1–3]. Diabetic cardiomyopathy (DCM),
one of the major complications of diabetes, poses a high risk of
mortality to patients with diabetes [4]. Multiple complex mechan-
isms involving unbalanced energy metabolism, oxidative stress,
inflammation, and mitochondrial dysfunction contribute to the
development of DCM [5, 6]. Particularly, the activation of
inflammatory cells and signals, and the release of inflammatory
cytokines, accelerate the process of cardiomyocyte hypertrophy
and cardiac fibrosis in the diabetic heart [7–9]. Therefore, anti-
inflammation has been considered an important strategy for
treating DCM [10].
The gut microbiota maintains a symbiotic relationship with the

host and plays a critical role in numerous physiological functions
involving nutrient metabolism, immunomodulation, and main-
tenance of the gut barrier [11, 12]. Disruption of gut microbiota
has been reported to be associated with cardiovascular disease
and autoimmune disease, e.g., inflammatory bowel disease,
diabetes, rheumatoid arthritis, and multiple sclerosis [13, 14].

Gut microbiota composition is altered in type 2 diabetes. The
abundance of butyrate-producing bacteria, for example, Roseburia
intestinalis and Faecalibacterium prausnitzii, are decreased in
patients with type 2 diabetes, while conditional pathogens, such
as Escherichia coli, some Clostridium species, Bacteroides caccae
and Eggerthella lenta are enriched [15]. Due to the increased
intestinal permeability in type 2 diabetes, gut microbial products
can translocate into the blood, resulting in metabolic endotox-
emia. For example, lipopolysaccharide (LPS), a key mediator of
endotoxemia, can activate an inflammatory response through the
toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88)
signaling pathway [16]. By interacting with TLR4, LPS can damage
cardiomyocytes [17] and block TLR4 signaling, resulting in cardiac
dysfunction [18, 19].
Myricetin, a polyphenolic compound, has diverse pharmacolo-

gical activities, including antioxidative, anti-inflammatory, anti-
atherosclerotic, and immunomodulatory properties [20]. It can
alleviate oxidative stress and inflammation by suppressing the
nuclear factor-κB (NF-κB) pathway in DCM [21]. However, due to
its extremely low bioavailability, it is hard to adequately explain
the therapeutic efficacy of myricetin [22], suggesting the existence
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of other potential mechanisms of myricetin action. Polyphenols
are the underlying substrates of gut microbiota, and regulating
gut microbiota is one of the mechanisms of their physiological
effects [22]. Myricetin supplementation has been shown to
regulate the gut microbiota in rats with non-alcoholic fatty liver
disease (NAFLD) by increasing the abundance of butyric acid-
producing bacteria and decreasing plasma LPS that activates TLR4,
leading to decreased inflammation [23]. Dihydromyricetin, a
myricetin derivative, can ameliorate inflammatory bowel disease
by regulating intestinal bacteria-associated bile acid metabolism
[24]. Therefore, myricetin can regulate gut microbiota and reduce
inflammation. However, whether myricetin can ameliorate DCM
by regulating gut microbiota remains unclear.
Therefore, we hypothesized that myricetin could inhibit the

development of DCM by mediating gut microbiota. A streptozo-
tocin (STZ)-induced DCM mouse model followed by a fecal
microbiota transplantation (FMT) experiment was constructed and
demonstrated that myricetin could alleviate DCM via regulating
the composition of gut microbiota and restoring intestinal barrier
function and the re-establishment of beneficial gut microbiota is
essential to maintain the high bioactivity of myricetin.

MATERIALS AND METHODS
Chemicals
Myricetin was purchased from Chengdu Herbpurify Co. Ltd. (Chengdu,
China), and its purity was >98%, as determined by high-performance liquid
chromatography (HPLC). Vancomycin, neomycin sulfate, metronidazole,
and ampicillin were obtained from the Beijing Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China).

Animals and treatments
Four-week-old male C57BL/6J mice were purchased from the Beijing Vital
River Laboratory Animal Technology Co., Ltd. (Beijing, China) and housed
at 22–26 °C in a specific pathogen-free standard laboratory environment
on a 12-h light/dark cycle with free access to a normal diet and water.
After acclimating for a week, the mice were randomly assigned to four

groups (n= 10 per group): control (CON) (fed a normal diet for 4 weeks,
then treated with the STZ vehicle for 5 days followed by intragastric
administration of myricetin vehicle twice a day for 16 weeks), myricetin (M)
(fed a normal diet for 4 weeks and treated with the STZ vehicle for 5 days
followed by intragastric administration of myricetin twice a day for
16 weeks), STZ (fed a high-fat diet for 4 weeks, then treated with STZ for
5 days followed by intragastric administration of myricetin vehicle twice a
day for 16 weeks), and myricetin+ streptozotocin (MSTZ) (fed a high-fat
diet for 4 weeks, then treated with STZ for 5 days, followed by intragastric
administration of myricetin twice a day for 16 weeks). In detail, the DCM
model was constructed by feeding mice with a high-fat diet (60% kcal fat)
for 4 weeks, followed by overnight fasting and intraperitoneal injection
with a dose of STZ (50mg/kg × 5 days) dissolved in sodium citrate buffer
(0.03 g/ml sodium citrate and 0.02 g/ml citric acid, pH= 4.2–4.5). After that,
mice with blood glucose > 16.7 mmol/L were considered to have devel-
oped DM [25], and continuous high-fat diet feeding for 16 weeks was used
to induce DCM.
The mice’s body weight and random blood glucose were measured

every four weeks. During the last week of intervention, the feces were
collected daily and stored at −80 °C until FMT. After that, all mice were
euthanized by carbon dioxide inhalation. Serum samples were centrifuged
for 5 min at 5000 rpm (rotor diameter 20 cm) at 4 °C, and the supernatants
were then collected and stored at −80 °C. Each mouse’s heart and bowel
tissues were divided into two parts: one was stored at −80 °C until
processing, and the other was subjected to histopathological examination
(Fig. 1).

Fecal microbiota transplantation
The gut contents collected from the MSTZ and CON mice were weighed,
homogenized, and suspended to a final concentration of 200mg/ml, and
centrifuged at 800 rpm (rotor diameter 20 cm) for 3 min in a saline solution
containing 10% glycerol, then the bacterial suspension was stored at
−80 °C. Before FMT, the content of myricetin in the bacterial suspension,
prepared by the gut contents in the MSTZ group, was measured by HPLC
(λ= 352 nm) to ensure no residue of myricetin remained.

Forty DCM mice established as described above were divided into four
groups (n= 10 per group): vehicle (treated with 10% glycerol for 16 weeks
intragastrically), vehicle+ Abx (treated with10% glycerol for 16 weeks and
antibiotics for 2 weeks intragastrically), M-FMT (treated with antibiotics for
2 weeks and gut contents derived from the above MSTZ mice were
intragastrically administered every 2 days for 16 weeks), CON-FMT group
(treated with antibiotics for 2 weeks and gut contents derived from CON
mice were intragastrically administered once every 2 days for 16 weeks).
An antibiotic cocktail was composed of ampicillin (1 g/L), vancomycin
(0.5 g/L), neomycin sulfate (1 g/L), and metronidazole (1 g/L). The samples
of blood, heart and bowel tissues, and feces were collected as described
above after sacrificing the mice (Fig. 1).

Histological analysis of paraffin sections
The mice’s heart and colon (2–4 cm above the cecum) were collected and
prepared by standard methods for histopathological analysis. According to
standard protocols, sections were stained with hematoxylin–eosin (H&E)
and periodic acid-Schiff (PAS). The H&E staining was used to calculate the
cardiomyocyte cross-sectional area (CSA) and observe the morphology of
the striated muscle. PAS was used to identify the number of goblet cells in
colon tissue. Immunohistochemistry (IHC) was performed to determine the
amount of type I collagen. In brief, antigen retrieval was performed in
sodium citrate buffer (pH= 6) in a microwave oven, and 8% goat serum
was used to block nonspecific binding. After incubation with primary
antibody [collagen I (1:500), ab90395, Abcam] overnight at 4 °C, sections
were washed with PBS for 5 min × 3 times and then incubated with anti-
mouse or anti-rabbit secondary antibody. After that, staining was
visualized with DAB. Negative controls were performed with PBS instead
of primary antibody. Finally, counterstaining was performed with
Papanicolaou hematoxylin. Brown areas were considered positive. Image-
Pro 6.0 (Media Cybernetics, Bethesda, MD, USA) was used to analyze
images and calculate results.

Assessment of cardiac structure and function
Two-dimensional echocardiography was performed on anesthetized
(inhaled isoflurane) mice. Images were then analyzed by an observer
blinded to the mouse group. Left ventricular ejection fraction (LVEF),
fractional shortening (FS), left ventricular internal dimension diastole
(LVIDd), and left ventricular internal dimension systole (LVIDs) were
measured according to the images of three independent cardiac cycles
acquired from each mouse.

Detection of serum LPS
Serum LPS was measured using assay kits purchased from the Nanjing
Jiancheng Bioengineering Institute (Nanjing, China), according to the
manufacturer’s instructions.

16S rDNA gene high-throughput sequencing
Fecal microbial DNA was extracted from mouse feces using a Mag Pure Soil
DNA LQ Kit. The quality of extracted DNA was evaluated by agarose gel
electrophoresis. DNA sequences were amplified by polymerase chain
reaction (PCR) and sequenced with an Illumina MiSeq. Operational
taxonomic units (OTUs) were clustered with a 97% similarity cut-off using
UPARSE software, and chimeric sequences were identified and removed
using UCHIME. To obtain the species classification information correspond-
ing to each OTU, the RDP Classifier algorithm (V16 http://rdp.cme.msu.edu/
) was used for comparative analysis of representative OTU sequences. The
species information of the community was annotated at various levels:
kingdom, phylum, class, order, family, genus, and species; the correlation
analysis of sample composition and community structure differences
among samples was carried out.

Western blotting analysis
Total protein was extracted from mice’s heart and colon tissues using
radio-immunoprecipitation assay (RIPA) lysis buffer, and protein concen-
trations of the extracts were assessed by BCA assay. Western blotting was
performed using the following antibodies: TLR4 (1:800, Abcam, ab- 13556),
MyD88 (1:1000, Abcam, ab-219413), NF-κB p65 (1:10,000, Abcam, ab-
32536), NF-κB p65 (phospho-T254) (1;800, Abcam, ab-131100), occludin
(1:1000, Abcam, ab-216327), GAPDH (1:1000, Abcam, ab-32536), and
β-actin (1: 500, Abcam, ab-115777). Band intensities were quantified using
Image Pro Plus 6.0.
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Statistical analysis
Prism, version 8.0 (GraphPad) was used for the statistical analysis. Data are
presented as mean ± standard error of the mean (SEM). Comparisons of
multiple groups were tested using a one-way analysis of variance (ANOVA),
followed by Tukey’s post-hoc test. A P-value < 0.05 was considered statistically
significant.

Study approval
All animal experiments were approved by the Animal Ethics Committee of
Shantou University Medical College (No. SUMC2021-463).

RESULTS
Myricetin ameliorates DCM-associated cardiac dysfunction
and fibrosis
The blood glucose in STZ mice was higher than in CON mice
(26.23 ± 0.93 mmol/L vs. 8.68 ± 0.47 mmol/L, P < 0.05), while no
significant difference was found between STZ and MSTZ groups

(Fig. 2A and Supplementary Table 1). There was no difference in
body weight (BW) among the four groups (Fig. 2B and
Supplementary Table 1). The heart weight (HW) (121.67 ± 2.46
vs. 103.00 ± 1.75, P < 0.05) and the HW/BW ratio (4.55 ± 0.19 vs.
3.78 ± 0.09, P < 0.05) in the STZ group were higher than that in
the CON group, and decreased after treatment with myricetin
(Fig. 2C, D and Supplementary Table 1). Compared with the CON
or M group the parameters of cardiac function, including LVEF
and FS, were reduced in the STZ group but were improved in the
MSTZ group, which were opposite to LVIDs and LVIDd (P < 0.05)
(Fig. 2F–I and Supplementary Table 2). The disordered myocar-
dium, enlarged cardiomyocytes, and increased collagen I seen in
the STZ group were not observed in the CON or M groups and
were attenuated by myricetin treatment (P < 0.01; Fig. 2J–M).

Myricetin alters the gut microbiota of DCM mice
The fecal samples were collected from CON, STZ, and MSTZ
groups for 16S rDNA sequencing to clarify whether myricetin

Fig. 1 Flow diagram of the study design. The study was divided into two phases. In the first phase, 40 mice were randomly assigned into
four groups: control group (CON), myricetin treatment group (M), streptozotocin treatment group (STZ), and myricetin and streptozotocin
treatment group (MSTZ). Mice were fed a high-fat diet combined with low-dose STZ intraperitoneal injection to establish a diabetes model,
and continuous high-fat diet feeding for 16 weeks was used to induce DCM. After 16 weeks of treatment with myricetin or myricetin vehicle,
the mice were sacrificed and the blood, colonic tissues, myocardial tissues, and feces were harvested. In the second phase, another 40 DCM
mice were divided into four groups: 10% glycerol solvent control group (Vehicle), 10% glycerol solvent antibiotic treatment control group
(Vehicle-Ab), fecal microbiota transplantation group (gut contents derived from MSTZ mice, M-FMT) and fecal microbiota transplantation
group (gut contents derived from CON mice, CON-FMT). After 16 weeks of treatment with fecal microbiota transplantation, the mice were
sacrificed and the blood, colonic tissues, myocardial tissues, and feces were harvested identically.
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Fig. 2 Evaluation of cardiac structure and function. A Blood glucose; B body weight (BW); C heart weight (HW); D HW/BW ratio; E M-mode
echocardiography; F left ventricular internal dimension diastole (LVIDd); G left ventricular internal dimension systole (LVIDs); H left ventricular
ejection fraction (LVEF); I fractional shortening (FS); J morphological changes of myocardial tissue shown by hematoxylin and eosin (H&E)
staining. The black arrows indicate the disorganization of striated muscle. K The cross-sectional area (CSA) of cardiomyocytes;
L immunohistochemistry (IHC) for collagen I; M quantitation of the collagen I. Data are presented as means ± SEM. One-way ANOVA was
used to analyze statistical differences. NS for P > 0.05, *P < 0.05, **P < 0.01.
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could alter gut microbiota composition. The number of opera-
tional taxonomic units (OTUs) reached saturation, as visualized by
a rarefaction curve, suggesting the collected fecal samples were
representative (Fig. 3A). The Venn diagram showed that a total of
1773 OTUs were obtained from the fecal samples in the three
groups, of which 489 OTUs were shared by all three groups
(Fig. 3B). Partial least squares-discriminant analysis (PLS-DA)
indicated that the gut microbiota from the STZ group was
distinctly different from the CON group but partially overlapped
with the MSTZ group (Fig. 3C). Specifically, the relative abundance
of predominant gut microbiota at the phylum (Fig. 3D, G–J) and
genus (Fig. 3E, L–N) levels were compared among the three
groups. At the phylum level, Firmicutes and Bacteroidetes were the
leading phyla in all groups, occupying over 80% of the total
sequences (Fig. 3D). The relative abundance of Firmicutes in the
STZ group was higher than that in the CON group (P < 0.01;
Fig. 3G), but the relative abundance of Proteobacteria in the STZ
group was lower than that in the CON group (P < 0.01; Fig. 3H).
Firmicutes and Proteobacteria were not statistically different
between the STZ and MSTZ groups (P > 0.05; Fig. 3G, H).
Compared with the CON group, Bacteroidetes and Actinomycetes
were lower in the STZ group but increased in the MSTZ group
(P < 0.05; Fig. 3I, J). Linear discriminant analysis effect size (LEfSe)
indicated that the bacteria that changed the most were Bacilli
(P < 0.05; Fig. 3F, K). At the genus level, the relative abundance of
short-chain fatty acid (SCFA)-producing bacteria involving Rose-
buria, Faecalibaculum, and Bifidobacterium was higher in the MSTZ
group when compared with the STZ group (P < 0.05; Fig. 3L–N).

Myricetin improves the intestinal barrier of DCM
H&E staining of colon tissue revealed a disordered arrangement
and decreased density of intestinal epithelial cells in STZ mice,
compared with CON or M mice, which were considerably
improved in the MSTZ group (Fig. 4A). The number of goblet
cells, measured by periodic acid-Schiff (PAS) staining (Fig. 4B, D),
and the expression of occludin, measured by IHC (Fig. 4C, E), were
decreased in the STZ group compared with the CON or M group,
while elevated in the MSTZ group (P < 0.05). The serum level of
LPS, detected by ELISA, was distinctly upregulated in the STZ
group compared with the CON or M groups while downregulated
in the MSTZ group (P < 0.01; Fig. 4F).

Myricetin inhibits the TLR4/MyD88 pathway in DCM
To investigate the possible molecular mechanisms by which
myricetin improves DCM through regulating gut microbiota,
western blotting was applied to determine the expression of
TLR4 and its downstream proteins involving MyD88, total p65, and
phosphorylated p65 (p-p65) in myocardial tissues. TLR4, MyD88,
and p-p65 expressions were increased in STZ mice compared with
CON and M mice, but reversed by myricetin treatment (P < 0.05;
Fig. 5D–G). Moreover, the IHC of TLR4 and p-p65 showed the same
results (P < 0.05; Fig. 5A–C).

FMT alleviates cardiac dysfunction and fibrosis in DCM
Neither the M-FMT nor CON-FMT groups had differences in blood
glucose and BW compared with the Vehicle or Vehicle-Abx group
(Fig. 6A, B and Supplementary Table 3). The HW (106.33 ± 2.70mg
vs. 118.33 ± 2.12 mg, P < 0.05) and HW/BW (3.83 ± 0.11 vs.
4.55 ± 0.16, P < 0.05) in the M-FMT group were reduced compared
with the Vehicle group. However, the HW and HW/BW in the CON-
FMT group were not statistically different from the Vehicle and
Vehicle-Abx groups (Fig. 6C, D and Supplementary Table 3).
Compared with the Vehicle or Vehicle-Abx group, the cardiac
function evaluated by echocardiographic measurements of LVIDd,
LVIDs, LVEF, and FS was improved in the M-FMT and CON-FMT
groups (Fig. 6E–I and Supplementary Table 4). H&E staining
showed that the myocardium in the Vehicle and Vehicle-Abx
groups were hypertrophied, swollen, and arranged disorderly, but

this pathological change was relieved in M-FMT and CON-FMT
groups (P < 0.05; Fig. 6J, L). Moreover, the expression of collagen I
measured by IHC in M-FMT and CON-FMT groups was decreased
compared with the Vehicle and Vehicle-Abx groups (P < 0.05;
Fig. 6K, M).

FMT protects intestinal barrier integrity in DCM
The disordered arrangement and decreased density of intestinal
epithelial cells in groups with FMT were alleviated compared with
groups without FMT (Fig. 7A). Furthermore, the number of goblet
cells (P < 0.05; Fig. 7B, D) and the expression of occludin (P < 0.05;
Fig. 7C, E) in M-FMT and CON-FMT mice were increased compared
with Vehicle and Vehicle-Abx mice. The serum LPS in the M-FMT
and CON-FMT groups was decreased compared with the Vehicle
and Vehicle-Abx groups (P < 0.05; Fig. 7F).

FMT inhibits the TLR4/MyD88 pathway in DCM
Lastly, we examined the expression of TLR4/MyD88 pathway-
related proteins in myocardial tissue by western blotting and
IHC. The expressions of TLR4 and its downstream proteins
involving the MyD88 and the p-p65 in M-FMT or CON-FMT mice
were detected by western blotting and found to be reduced
compared with Vehicle or Vehicle-Abx mice (P < 0.05;
Fig. 8D–H). Furthermore, the expressions of TLR4 and p-p65,
as examined by IHC, were also consistent with western blotting
(P < 0.05; Fig. 8A–C).

DISCUSSION
As a common complication of diabetes, DCM can impair the
quality of life and increase mortality in patients with diabetes, as
well as raise the risk of heart failure in patients without
cardiovascular disease [4]. However, due to its complex patholo-
gical mechanism, DCM has no effective prevention and treatment
strategies. Numerous studies have demonstrated that the gut
microbiota in patients with diabetes has changed [26]. Myricetin, a
natural polyphenolic compound in plants, shows therapeutic
potential for DCM [20, 21] and can also regulate gut microbiota
[27]. Nevertheless, the underlying mechanisms of myricetin have
not been completely elucidated because of its low bioavailability.
Therefore, we explored the possible role and mechanism of
myricetin in DCM.
The study showed that myricetin alleviates cardiac dysfunction,

myocardial fibrosis, and intestinal barrier disruption by regulating
gut microbiota and its metabolites. Myricetin repaired the
damaged intestinal barrier in DCM mice by increasing the
abundance of SCFA-producing bacteria, lowering gut permeability
and metabolic endotoxemia. The reduction of LPS in systemic
circulation can inhibit TLR4 in cardiac tissue, reduce the
translocation of NF-κB to the nucleus, and release inflammatory
cytokines, thereby improving cardiac dysfunction and myocardial
fibrosis in DCM. Furthermore, FMT experiments indicate that the
gut contents derived from MSTZ and control mice prevent the
progression of DCM. Thus, the study suggests that regulating gut
microbiota is the main mechanism of myricetin in treating DCM.
The gut microbiota has shown severe dysbiosis in animals and

patients with T2DM [28]. Our study confirms that the abundance
of gut microbiota in DCM mice is distinctly decreased compared
with control mice, and myricetin can significantly restore it. At the
phylum level, Firmicutes, Bacteroidetes, Proteobacteria, and Actino-
bacteria are the predominant gut microbiota [29, 30], and they
could reflect the changes in gut microbiota composition. In our
study, the relative abundance of Firmicutes in DCM mice increased
compared with control mice and is reversed by myricetin
treatment. In addition, the abundance of Bacteroidetes, Proteo-
bacteria, and Actinobacteria in DCM mice was reduced compared
with the control mice and restored by myricetin treatment. We
further analyzed the relative abundance of gut microbiota at the
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genus level. It was found that the abundance of probiotics is
decreased in DCM mice, and recovered by myricetin, especially for
SCFA-producing bacteria such as Roseburia, Bifidobacterium, and
Faecalibaculum [28, 31, 32], which can use non-digestible

carbohydrates to produce SCFAs. As a key regulator to enhance
intestinal barrier function and communicate with the host
immune system [33–36], SCFAs can prevent LPS from entering
the systemic circulation, reducing metabolic endotoxemia.

Fig. 3 Composition of gut microbiota analyzed by 16S rRNA sequencing. A Rarefaction curves of bacterial OTUs; B difference of gut
microbiota in the three groups shown by Venn diagrams; C partial least-squares-discriminant analysis (PLS-DA) analysis at the OTU level;
D distribution of fecal microbiota at the phylum level; E distribution of fecal microbiota at the genus level; F biomarker taxa analyzed by LEfSe;
G relative abundance of Firmicutes; H relative abundance of Proteobacteria; I relative abundance of Bacteroidetes; J relative abundance of
Actinomycetes; K relative abundance of Bacilli; L relative abundance of Roseburia; M relative abundance of Faecalibaculum; N relative abundance of
Bifidobacterium. Data are expressed as mean ± SEM. One-way ANOVAwas used to analyze statistical differences. NS for P > 0.05, *P < 0.05, **P < 0.01.
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Type 2 diabetes is characterized by chronic low-grade
inflammation [37]. LPS, an essential component of Gram-
negative bacteria cell walls, has been considered a major
contributor to chronic low-grade inflammation [38]. Many studies

have shown that the structure and function of the intestinal
barrier in DM patients and animal models are impaired [39, 40].
LPS can enter the systemic circulation and activate a systemic
inflammatory response when the intestinal barrier is impaired.

Fig. 4 Assessment of intestinal barrier and endotoxemia. A Intestinal epithelial cells stained with H&E; B goblet cells stained (red arrows)
with PAS, C occludin analyzed by IHC; D quantitation of occludin; E number of goblet cells per microscopic field (original magnification ×200)
in the colon; F serum LPS detected by ELISA. Data are expressed as mean ± SEM. One-way ANOVA was used to analyze statistical differences.
NS for P > 0.05, *P < 0.05, **P < 0.01.
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Subsequently, it will be recognized by innate toll-like receptors
(TLRs), especially TLR4, resulting in the translocation of p-p65 to
the nucleus and the release of pro-inflammatory cytokines
[38, 41, 42]. Besides inflammatory cells, TLR4 is also expressed in

cardiomyocytes [43]. The role of TLR4-mediated inflammatory
signaling in the development of DCM has been reported
[18, 44–46]. Our study shows that serum LPS is increased in
DCM mice, which is consistent with previous studies [47], and it

Fig. 5 Myricetin alleviates the inflammatory response of cardiomyocytes in DCM mice. A Expression of TLR4 and p-p65 in myocardial tissues
detected by IHC; B positive area of TLR4; C positive area of p-p65; D immunoblot analysis of TLR4/β-actin, MyD88/β-actin, p-p65/β-actin and total
p65/β-actin in cardiomyocytes; E densitometric analysis of TLR4/β-actin in cardiomyocytes; F densitometric analysis of MyD88/β-actin in
cardiomyocytes; G densitometric analysis of p-p65/β-actin in cardiomyocytes; H densitometric analysis of total p65/β-Actin in cardiomyocytes.
Data are expressed as mean ± SEM. One-way ANOVA was used to analyze statistical differences. NS for P > 0.05, *P < 0.05, **P < 0.01.
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Fig. 6 FMT attenuates cardiac remodeling and myocardial fibrosis in DCM mice. A–D Blood glucose, BW, HW, and HW/BW; E M-mode
echocardiography; F–I LVIDd, LVIDs, LVEF, FS; J morphological changes of myocardial tissues stained with H&E; K cross-sectional area of
cardiomyocytes (CSA); L IHC for collagen I; M collagen I-positive area. Data are presented as means ± SEM. One-way ANOVA was used to
analyze statistical differences. NS for P > 0.05, *P < 0.05, **P < 0.01.
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Fig. 7 FMT attenuates damage to the intestinal barrier and metabolic endotoxemia in DCM mice. A Intestinal epithelial cells stained with
H&E; B goblet cells (red arrows) stained with PAS; C occludin stained with IHC; D number of goblet cells per microscopic field (original
magnification ×200) of the mouse colons; E occludin-positive area; F LPS measured by ELISA. Data are expressed as mean ± SEM. One-way
ANOVA was used to analyze statistical differences. NS for P > 0.05, *P < 0.05, **P < 0.01.
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Fig. 8 FMT alleviates the inflammatory response of cardiomyocytes in DCM mice. A Expressions of TLR4 and p-p65 in myocardial tissues
detected by IHC; B positive area of TLR4; C positive area of p-p65; D immunoblot analysis of TLR4/GAPDH, MyD88/β-actin, p-p65/GAPDH and
total p65/GAPDH in the cardiomyocytes; E densitometric analysis of TLR4/GAPDH in cardiomyocytes; F densitometric analysis of MyD88/
β-actin in cardiomyocytes; G densitometric analysis of p-p65/GAPDH in cardiomyocytes; H densitometry analysis of total p65/GAPDH in
cardiomyocytes. Data are expressed as mean ± SEM. One-way ANOVA was used to analyze statistical differences. NS for P > 0.05, *P < 0.05,
**P < 0.01.
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can return to normal levels after treatment with myricetin.
Furthermore, the expression of TLR4 and its downstream proteins
MyD88 and p-p65 are increased in DCM and decreased by
myricetin treatment. Based on these results, reducing TLR4/MyD88
pathway signaling in cardiomyocytes by reducing gut-derived LPS
levels is one of the key mechanisms by which myricetin
affects DCM.
To further test our hypothesis that the gut microbiota is a

potential mechanism for the anti-DCM effects of myricetin, an FMT
experiment was performed by transplanting the gut contents of
mice treated with or without myricetin. Before FMT, HPLC was
performed to ensure no residual myricetin in the bacterial
suspension was transplanted into the recipient DCM mice. The
gut contents from control mice were also transplanted into DCM
mice to verify whether restoring normal gut microbiota could treat
DCM. Pseudo-germ-free mice were established by antibiotic
treatment for two weeks. At the same time, Vehicle and Vehicle-
Abx groups were established to test whether antibiotics affected
DCM-related phenotypes. Results showed that cardiac function
and fibrosis and intestinal barrier function both in M-FMT and
CON-FMT mice were improved, while the serum LPS and TLR4/
MyD88 pathway-related proteins were reduced. Based on these
results, our FMT experiments showed that myricetin could prevent
DCM by changing or restoring microbiota and improving intestinal
barrier function.
Our study demonstrates that gut dysbiosis and metabolic

endotoxemia might be involved in the pathogenesis or develop-
ment of DCM. Importantly, we found that myricetin treatment
could inhibit DCM by increasing the abundance of SCFA-
producing bacteria and decreasing serum LPS levels. These
findings show a novel biochemical mechanism of myricetin in
anti-DCM, laying the foundation for future myricetin-derived
drugs.
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