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Lentinan confers protection against type 1 diabetes by
inducing regulatory T cell in spontaneous non-obese diabetic
mice
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BACKGROUND: Lentinan (LNT) is a complex fungal component that possesses effective antitumor and immunostimulating
properties. However, there is a paucity of studies regarding the effects and mechanisms of LNT on type 1 diabetes.
OBJECTIVE: In the current study, we investigated whether an intraperitoneal injection of LNT can diminish the risk of developing
type 1 diabetes (T1D) in non-obese diabetic (NOD) mice and further examined possible mechanisms of LNT’s effects. Methods: Pre-
diabetic female NOD mice 8 weeks of age, NOD mice with 140–160mg/dL, 200–230mg/dL or 350–450 mg/dL blood glucose levels
were randomly divided into two groups and intraperitoneally injected with 5 mg/kg LNT or PBS every other day. Then, blood sugar
levels, pancreas slices, spleen, PnLN and pancreas cells from treatment mice were examined.
RESULTS: Our results demonstrated that low-dosage injections (5 mg/kg) of LNT significantly suppressed immunopathology in
mice with autoimmune diabetes but increased the Foxp3+ regulatory T cells (Treg cells) proportion in mice. LNT treatment induced
the production of Tregs in the spleen and PnLN cells of NOD mice in vitro. Furthermore, the adoptive transfer of Treg cells extracted
from LNT-treated NOD mice confirmed that LNT induced Treg function in vivo and revealed an enhanced suppressive capacity as
compared to the Tregs isolated from the control group.
CONCLUSION: LNT was capable of stimulating the production of Treg cells from naive CD4+ T cells, which implies that LNT
exhibits therapeutic values as a tolerogenic adjuvant and may be used to reverse hyperglycaemia in the early and late stages
of T1D.
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INTRODUCTION
As an autoimmune disease, type 1 diabetes (T1D) can be
attributed to the autoreactive destruction of pancreatic β cells,
which is caused by T cells and precipitates a decline in insulin
production [1, 2]. Among the 230 million patients affected by
diabetes worldwide, 4.9 million suffer from T1D; the morbidity of
T1D is rising by 3–5% annually on a global scale [3, 4]. Numerous
studies have highlighted the use of islet transplantation as a
potential mode for T1D treatment [5–7]. However, the widespread
utilisation of this procedure is limited by the shortage of adequate
islets, reduction of islet cell cluster subsequent to islet extraction,
and putative autoimmune destruction of transplanted islets. In
addition, the use of immunosuppressive drugs during islet
transplantation may lead to side effects [8–10]. Therefore, it is
prudent to investigate new and cost-effective drugs for T1D
prevention or treatment in order to reduce the morbidity and
mortality triggered by this autoimmune disease.

The consumption of mushrooms is an age-old practice in
various cultures and is known to be highly beneficial to human
health [11]. As one of the most commonly cultivated edible
mushrooms, Lentinus edodes (shiitake mushroom) exhibits high
value for medical applications [12]. Currently, Lentinus edodes is
used in the treatment of several diseases, such as fungal
infections, bronchial inflammation, depressed immune function
(like AIDS), frequent flus and colds, cancers, environmental
allergies and urinary incontinence [13]. Recent studies have
further demonstrated that Lentinus edodes has beneficial effects
on controlling blood glucose in streptozotocin-stimulated diabetic
rats [14, 15]. Lentinan (LNT), the backbone of β-(1, 3)-glucan with
β-(1, 6) branches, is an active ingredient extracted from Lentinus
edodes. More importantly, mounting experimental and epidemio-
logical investigations have reported that LNT can contribute to the
decline in the risk of chronic diseases, including gut inflammation
[16], chronic hepatitis B infection [17] and cancers [18–21].
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However, to our knowledge, no study has investigated whether
LNT has any effect on autoimmune-related T1D. To address this
issue, the current study set out to determine whether the
intraperitoneal administration of LNT can lower the risk for T1D
development in non-obese diabetic (NOD) mice, followed by
further analysis of the putative mechanism of LNT. We observed
that the abdominal administration of LNT depressed immuno-
pathology in models with autoimmune diabetes. LNT was capable
of stimulating the production of Treg cells from naive
CD4+ T cells, which implies that LNT exhibits therapeutic values
as a tolerogenic adjuvant and may be used to reverse
hyperglycaemia in the early and late stages of T1D.

MATERIALS AND METHODS
Animal models
Female NOD/LtJ mice (aged 5–24 weeks; Jackson Laboratory, Bar Harbor,
Maine, United States) were chosen. To detect hyperglycaemia in the
obtained mice, glucose levels were monitored using tail vein blood
samples from the NOD/LtJ mice that were obtained with Ascensia Microfill
blood glucose test strips (Bayer, Mishawaka, Indiana, United States). Animal
experimental procedures were implemented under ratification from the
Animal and Use Committee of Nanjing Medical University (Permission
Number: 20110003), and extensive efforts were conducted to avoid the
unnecessary suffering of these mice.

Treating mice with LNT
Purified LNT was purchased from Jiangsu Yongjian Pharmaceutical Co., Ltd.
(Taizhou, China) and diluted with phosphate buffered saline (PBS) prior to
injection. All used reagents are listed in Table 1. The 8-week-old female
NOD/LtJ mice were randomly divided into 2 groups (n= 15, for each
group) and intraperitoneally injected with 5 mg/kg LNT in 100 μL PBS or
only 100 μL PBS every other day, and subsequent detection of blood sugar
levels in mice were carried out. A previous study used LNT at a dosage of
20mg/kg [22], but we employed an approach of 5 mg/kg LNT injections as
a significantly low dose. The mice were euthanized after two consecutive
weeks of >200mg/dL blood sugar levels; all mice were euthanized
when >50% control mice developed a disease. To investigate its
therapeutic effects on T1D, LNT in PBS was intraperitoneally injected into
new-onset diabetic NOD mice [23] (140–160mg/dL, 200–230mg/dL or
350–450mg/dL blood glucose) until the end of the experiment. No
blinding was done. The pancreatic lymph nodes (PnLNs), spleens and
pancreases were obtained from the mice for histological and fluorescence-
activated cell sorting (FACS) experimentation.

FACS analysis
Single-cell suspensions were made from spleens, PnLNs and pancreas of
NOD mice. Cells were washed and re-suspended in staining buffer (PBS
containing 2% bovine serum albumin and 0.05% NaN3). Intranuclear
staining was implemented using the method described in the Fixation/
Permeabilization buffer solution manuals (eBioscience). Intracellular

cytokine staining was implemented by inducing cells at 37 °C with
10 ng/mL phorbol-12-myristate-13-acetate (PMA), 250 ng/mL ionomycin
and Golgi-Plug (1:1000; BD Pharmingen) for 4 hours. Next, cell fixing was
conducted with a fixation/permeabilization buffer solution (BD Bios-
ciences). The stained cells were acquired with the help of a FACSCalibur
flow cytometer (BD Biosciences) before data processing was carried out
using FlowJo software (Tree Star, Ashland, Oregon, United States). Specific
regions were marked, followed by setting of the gates and quadrants
during data analysis according to the isotype control background staining.
A minimum of 10,000 cells in each sample were assessed.

In vitro differentiation of mouse Treg cells
Magnetic cell sorting (Miltenyi Biotec) or FACS sorting (BD FACSAria II) was
carried out for the purification of CD4+ CD25- (naive) T cells from mouse
PnLNs and spleens. Afterwards, cell incubation was implemented in 24-
well plates at 0.4 × 106 cells/well with 1.5 μg/mL plate-bound anti-CD3 and
1.5 μg/mL soluble anti-CD28 at 37 °C. Next, a cell culture was performed
with high glucose DMEM encompassing 10% FBS or with the same
medium encompassing variable concentrations of LNT (50 μg/mL or
100 μg/mL) subsequent to TCR stimulation. After three days, FACS staining
was conducted to analyse the cells.

CFSE labelling
As previously described, serial dilution of the intracellular dye carboxi-
fluorescein diacetate succinimidyl ester (CFSE) was applied to determine
the rates of individual cell proliferation [24]. Specifically, naive
CD4+ CD25- T cells were separated from a single suspension of NOD
mice splenocytes and PnLNs using microbeads according to the
manufacturer’s instructions (Miltenyi Biotech, Auburn, CA). CD4+ CD25-
T cells were suspended at 5 × 107/ml in PBS with 5 μM CFSE and incubated
at 37 °C for 20min. Cells were washed with PBS and then incubated in a
complete medium encompassing 50 or 100 μg/mL LNT or PBS subsequent
to TCR stimulation. Cells were harvested after 24 h, 48 h and 72 h stained
for CD4 and analysed by flow cytometry.

Real-time PCR
Subsequent to total RNA content extraction from cultured cells using
RNeasy mini kits (Qiagen), a high-capacity cDNA reverse transcription kit
(Applied Biosystems) was used to generate cDNA. Quantitative real-time
polymerase chain reaction (PCR) was implemented based on protocols of
the TaqMan gene expression assay kits (Applied Biosystems). Hprt mRNA
functioned as a normaliser for the obtained results.

In vitro Treg cell suppression assays
CD4+ CD25- (naive) T cells were extracted from spleens and PnLNs in
CD45.1 congenic C57BL/6 mice. Subsequently, in the presence of LNT or
PBS, FACS sorting (BD FACSAria II) was conducted for a three-day
extraction of CD4+ CD25+ Foxp3+ Treg cells from cultured CD4+ CD25-
Foxp3-T cells using 1.5 μg/mL plate-bound anti-CD3 and 1.5 μg/mL soluble
anti-CD28 (all were CD45.2+ ). Different ratios of CD45.2+ Treg cells
were then incubated with CFSE-tagged CD45.1+ CD4+ CD25- T cells in

Table 1. The information of used reagents.

Reagents Company Clone

Purified anti-mouse CD3 (no azide and low-endotoxin) antibody eBioscience 145-2C11

Purified anti-mouse CD28 (no azide and low-endotoxin) antibody eBioscience 37.51

Fluorochrome-conjugated anti-mouse CD4 antibody eBioscience RM4-5

Fluorochrome-conjugated anti-mouse CD8α antibody eBioscience 53-6.7

Fluorochrome-conjugated anti-mouse CD45 antibody eBioscience 30-F11

Fluorochrome-conjugated anti-mouse CD25 antibody eBioscience PC61.5 and eBio7D4

Fluorochrome-conjugated anti-mouse/rat Foxp3 antibody eBioscience FJK-16a

Fluorochrome-conjugated anti-mouse IL-4 antibody eBioscience 11B11

Fluorochrome-conjugated anti-mouse IL-17A antibody BioLegend TC11-18H10.1

Fluorochrome-conjugated anti-mouse IFN-γ antibody BioLegend XMG1.2

Fluorochrome-conjugated anti-mouse CD45.1 antibody Miltenyibiotec A20

Fluorochrome-conjugated anti-mouse CD45.2 antibody Miltenyibiotec 104-2
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the presence of anti-CD3/CD28 (0.5 μg/mL). Finally, FACS was utilised to
analyse CFSE-diluted CD45.1+ effector T cells after a three-day culture.

Treg-cell transfer experiment
Subsequent to 15-day treatment, total purified Treg cells were obtained
from the spleens of both control and LNT-induced mice (1 × 105 cells/
mouse), followed by intravenous injection into euglycemic female NOD
mice and monitoring as previously mentioned. The pancreases of the mice
were attained subsequent to the termination of the experiments for
histopathological analyses.

Histochemical analysis and the examination of inflammatory
responses
Subsequent to 10% formaldehyde fixing, the livers, kidneys, hearts and
pancreases were made into paraffin-embedded sections (5 µm), followed
by haematoxylin-eosin staining. For the pancreas, an analysis of the
stained sections was conducted using a grading system in a blinded
manner, wherein 0 represented no infiltration, one indicated peri-islet
infiltration (<5%), two suggested 5–25% islet infiltration, three represented
25–50% islet infiltration, and four stood for >50% islet infiltration [25, 26].
Approximately 20 islets in each group were assessed. At least three mice
were analysed, followed by the calculation of the insulitis score.

Statistical analysis
The GraphPad Prism 8 software was adopted to process the data. Unless
stated otherwise, two different groups were compared with the unpaired
two-tailed Student’s t test; data among multiple groups were compared
using a one-way analysis of variance. T1D progression was analysed using
Kaplan-Meier survival curves and log-rank analyses between the cohorts.
The total number of infiltrated islets was compared between the test and
control groups using a Fisher’s exact test. *p < 0.05 was regarded as
statistically significant.

RESULTS
LNT suppresses T1D in NOD mice
To evaluate LNT’s effects on autoimmune diabetes, female NOD
mice underwent intraperitoneal injection with a low dose of LNT
(5 mg/kg) [22] starting at 8 weeks of age when the mice were still
regarded as prediabetic; the inflammatory process was just
beginning, but the blood glucose remained within the normal
range [27] (Fig. S1A). As depicted in Fig. 1A–C, control NOD mice
began to develop diabetes at nearly 16–18 weeks of age
(8–10 weeks post-treatment with PBS), and 50–60% were afflicted
with diabetes at 24 weeks of age (16 weeks post-treatment with
PBS) (Fig. 1A). However, a vast majority of the LNT-treated NOD
mice had no diabetes at 24 weeks of age (Fig. 1A).
As evidence of further protection against diabetes, LNT-treated

mice presented with a remarkable decline of insulitis and an
increase in preserved islets relative to the controls (Fig. 1B, C).
Moreover, when NOD mice exhibited 140–160mg/dL prediabetic
blood glucose levels (Fig. S1B) or 200–230 mg/dL new-onset
diabetic levels (Fig. S1C) [28], LNT treatment brought about
significant amelioration of hyperglycaemia in most mice for
approximately 12 weeks (Fig. 1D) or 3 weeks (Fig. 1G) post-
treatment initiation. Consistently, LNT-treated mice effectively
prevented immune cell infiltration and pancreatic islet destruction
(Fig. 1E, F, H, I). LNT treatment once the mice had reached
350–450mg/dL diabetic blood glucose levels (Fig. S1D) also
brought about significant amelioration of hyperglycaemia in most
mice for ~2 weeks (Fig. S1E) post-treatment initiation. Additionally,
non-diabetic NOD mice that were 24 weeks of age were treated
either with or without LNT for 5 months. The results demonstrated
that LNT-treated NOD mice did not exhibit any notable changes in
body weight (Fig. S1F), behaviour, gross injuries or other signs of
treatment toxicity. At the same time, an extensive histopatholo-
gical examination of the liver, kidney, heart and pancreas sections
of LNT-treated NOD mice did not reveal evidence of acute or
chronic injury compared with the control mice (Fig. S1G). Taken

together, these findings indicate that LNT causes repression of the
immunopathology of NOD mice with autoimmune diabetes.

LNT depresses autoreactive T cells but elevates Treg in NOD
mice
NOD mice possess a plethora of immune defects that may result in
their autoimmunity expression [27]. Among them, the defective
regulatory CD4+ CD25+ Foxp3+ T cells (Tregs) population
assumes a pivotal role in T1D induction [29]. To study whether
increased Treg cell levels contribute to LNT-orchestrated inhibition
of diabetes, spleen, PnLN and pancreas cells from LNT-treated
mice (Fig. 1, prediabetic NOD mice aged 8 weeks, NOD mice with
140–160mg/dL prediabetic blood glucose levels and NOD mice
with 200–230 mg/dL new-onset diabetic levels) were examined for
Treg cells by means of FACS. As shown in Fig. 2, an obviously
enhanced proportion of CD4+ CD25+Foxp3+ Treg cells existed in
the spleens (Fig. 2A, D, G) and PnLNs (Fig. 2A, E, H) of mice treated
with LNT compared to the PBS-treated controls. Conversely, LNT
treatment reduced CD4+ IFN-γ+ (Th1) and CD8+ IFN-γ+ T cell
frequencies in spleens (Fig. 2B, C, D, G) and PnLNs (Fig. 2H) of the
NOD mice. Meanwhile, no difference was found regarding
CD4+ IL-17A+ (Th17) and CD4+ IL-4+ (Th2) cell frequencies in
spleens (Fig. S2A, S2C, S2E) and PnLNs (Fig. S2B, S2D, S2F)
between the LNT-treated mice and controls. The pancreases of
LNT-treated mice exhibited augmented CD4+ Foxp3+ Treg cell
frequency and diminished IFN-γ-producing CD4+ and CD8+ T
cell frequencies in contrast to controls (Fig. 2F, I). Collectively,
these data indicated that LNT treatment led to potent enhance-
ment in Treg cell frequency and reduction in Th1 cells and
CD8+ IFN-γ+ T cells in vivo, conferring protection to NOD mice
against T1D.

LNT induces Treg cells
In order to assess the influence of LNT on T cell activation, naive
mouse spleen and PnLN naive CD4+ CD25- T cells were
incubated in a medium encompassing 50 or 100 μg/mL LNT or
PBS subsequent to TCR stimulation. It was found that LNT
influenced neither T-cell activation-related factors nor apoptosis
(data not shown). Conversely, LNT diminished T cell proliferation
(Fig. S3A), which contributed to a increase in un-proliferated cell
numbers subsequent to 48–72 h of incubation. Additionally, LNT-
stimulated T cells had decreased levels of mRNAs correlating to
type 1 (Th1 cells; Il2 and Ifng) and type 2 (Th2 cells; Il4 and Il13)
helper T cells and Il6 compared to control cells, while Treg cells
(Il10 and TGF-β1) were augmented with unchanged amounts of
Il17a mRNA (Fig. S3B–S3I). Furthermore, LNT generated strikingly
enhanced Foxp3+ Treg cells (Fig. 3A–C) and Foxp3 mRNA (Fig. 3D,
E) in naive CD4+ CD25- T cells relative to the control group but
reduced the absolute number of CD4+ CD25-Foxp3- non-Treg
cells at 72 h post-culture (Fig. 3F, G). Together, these findings
indicated that LNT specifically accelerated Foxp3 levels and Treg
cell fates in naive T cells.

LNT-induced Treg cells prevent T1D in NOD mice
We further analysed Treg cell function following LNT induction
and found that in vitro, CD45.1+ effector T cells (Teff) proliferation
were appreciably inhibited in LNT-treated CD45.2+ Treg cells (Fig.
S4B) compared with PBS treatment controls. In addition, a Treg-
cell-transfer model of T1D was applied to ascertain the
immunosuppressive role of LNT-treated Treg cells in vivo. Splenic
Treg cells extracted from mice euthanized following a 2-week LNT
treatment were adoptively transferred into NOD mice aged 8 or
10 weeks (Fig. S4A), followed by an examination of their capability
of manipulating ongoing autoimmunity and repressing hypergly-
caemia. As depicted in Fig. 4A, protection against T1D was higher
in prediabetic mice aged 8 weeks that received Treg cells from the
spleens of LNT-induced mice than it was in mice receiving Treg
cells from control mice. In addition, mice aged 10 weeks (Fig. 4D)
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that received Treg cells of LNT-induced mice also developed
hyperglycaemia much more slowly than the mice that
received the Treg cells from control mice. Further, prominently
reduced severe immune cell infiltration and insulitis were
detected in the pancreatic islets of mice receiving Treg cells of
LNT-inducing mice than in mice receiving Treg cells of PBS-treated
controls (Fig. 4B, E). Approximately 60% of islets in mice receiving
Treg cells of LNT-induced mice exhibited insulitis grade ≤2, and at
least 80% islets of mice receiving Treg cells from PBS showed an
insulitis severity grade ≥2 (Fig. 4C, F). In conjunction with the

aforementioned observations, these results indicated that LNT
triggers a depression of the immunopathology in NOD mice with
autoimmune diabetes and also that increased amounts of Treg
cells participate in this process.

DISCUSSION
In the current work, we investigated the role of LNT in T1D
development, and our findings revealed that a low-dose admin-
istration of LNT (5 mg/kg) noticeably repressed T1D onset in NOD

Fig. 1 LNT treatment suppresses spontaneous diabetic frequency in NOD mice. Pre-diabetic female NOD mice 8 weeks of age received
intraperitoneal treatment with 5mg/kg LNT in 100 μL PBS (LNT) or only 100 μL PBS (Ctrl) as a control every other day for 16 weeks, followed by
an evaluation of T1D development. Hyperglycaemia in mice was measured weekly, and two consecutive weeks of a glucose level >250mg/dL
was considered indicative of diabetes. A The frequency of mice without T1D over time (n= 15). B Representative history pancreas slices from
mice in (A). Pancreatic islets are indicated by white arrows. C The percentages of islets with varying grades of insulitis (n= 20). The stages (0–4)
represent diabetes progression (also suits for F and I). NOD mice with 140–160mg/dL blood glucose levels underwent intraperitoneal
treatment with 5mg/kg LNT before assessment of diabetes progression. D Blood glucose levels in mice over time (n= 5). E Representative
histology pancreas slices from the mice in (D). Pancreatic islets are indicated by white arrows. F The frequency of islets with grade 0–4 insulitis
(n= 20). NOD mice with 200–230mg/dL blood glucose received an intraperitoneal treatment with 5 mg/kg LNT before regular monitoring of
the diabetes progression. G Blood glucose levels in mice over time (n= 5). H Representative histology pancreas slices from the mice in (G).
Pancreatic islets are indicated by white arrows. I The frequency of islets with grade 0–4 insulitis (n= 20). Summary data are presented as the
mean ± SEM. *p < 0.05, **p < 0.01 vs the Ctrl group.
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mice. Accordingly, LNT administration effectively attenuated
pancreatic insulitis in NOD mice. We also found that LNT
treatment markedly augmented CD4+CD25+Foxp3+ regulatory
T cells in the spleen, PnLN and pancreas of diabetic NOD mice. It
was also determined that LNT led to the generation of Treg cells
from naive CD4+ T cells. Taken together, our findings indicate
that LNT may be a natural agent that can be putatively adopted to

protect against T1D by inducing regulatory T cells in spontaneous
NOD mice.
Tremendous amounts of effort made by our peers in the

scientific community have availed the structure of β-glucans from
different sources (oat, barley and shiitake), highlighting the direct
bioactive properties of these polysaccharides [30–32]. It is also
known that LNT represents a mushroom β-glucan that exhibits

Fig. 2 LNT diminishes autoreactive T cells but elevates Treg in NOD mice. Female NOD mice received an intraperitoneal treatment with
5mg/kg LNT every other day beginning at 8 weeks of age, followed by euthanasia at 24 weeks of age. Manifest CD25+ Foxp3+ Treg cells (A),
CD4+ IFN-γ+ T cells (B) and CD8+ IFN-γ+ T cells (C) frequencies in mice spleens and PnLNs. Foxp3+ Tregs, CD4+ IFN-γ+ T cells and
CD8+ IFN-γ+ T cells frequencies in spleens (D), PnLNs (E) and pancreases (F) of NOD mice with 140–160mg/dL blood glucose levels treated
with LNT or Ctrl for 16 weeks, and blood glucose levels in the Ctrl mice reached 400–500mg/dL. The frequency of Foxp3+ Tregs, CD4+ IFN-
γ+ T cells and CD8+ IFN-γ+ T cells in spleens (G), PnLNs (H) and pancreases (I) of NOD mice with 200–230mg/dL blood glucose levels that
were treated with LNT or Ctrl for 4 weeks; the blood glucose levels in Ctrl mice reached 450–500mg/dL. Summary data are shown as the
mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs the Ctrl group.
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effective antitumor and immunostimulating properties [13, 33].
However, as we know, no works have attempted to determine the
potential influence of LNT on preventing or treating T1D.
Currently, NOD mouse models are regarded as the gold-
standard for studying T1D, which, unlike multiple other models
for autoimmunity, provide the advantage of developimg sponta-
neous disease in a manner that is similar to the same process in
humans [34]. Importantly, usage of these models has contributed
to various improvements, like the identification of numerous
autoantigens and biomarkers that are shared by humans, which
has helped to develop many therapeutic targets [35]. Thus, it
would be plausible to suggest that the use of NOD mouse models
in the present study may offer valuable information suitable for
further clinical trials in humans.
A study performed by Karumuthil-Melethil demonstrated that

fungal β-glucans exert an immunity-modulating effect on NOD
mice [26]. In addition, hyperglycaemia in NOD mice has been
shown to be completely delayed following induction with
zymosan, another fungal β-glucan, at low (25 μg/mouse) or high
(100 μg/mouse) doses [25]. In the current study, we determined
that low-dosage intraperitoneal injections of LNT (5 mg/kg) could
modulate diabetes development in hyperglycaemic NOD mice. In
addition, our findings revealed that these intraperitoneal injec-
tions of LNT could further disrupt diabetes progress in NOD mice
with new-onset diabetes. Long-term injection with LNT brought
about no substantial side effects for NOD mice—a result that
could be positively implicated in developing similar clinical
therapeutic regimens for T1D in humans.
CD4+CD25+Foxp3+ regulatory T cells, which are generated by

the normal thymus as a functionally mature T-cell subpopulation,
assume an essential role in self-tolerance maintenance [36, 37].
More importantly, the progression of T1D in NOD mice is
orchestrated by the balance between diabetogenic T cells (such
as Th1 cells [38], Th17 cells [39], CD8+ T cells [40] and regulatory
T cells) [41, 42]. Autoreactive T cells, primarily IFN-γ-producing CD4
(Th1) and CD8 (Tc1) T cells, all undergo progressive expansion and
cause insulin-producing β-cell destruction in the process of T1D. In

an inflammatory microenvironment, the remaining β-cells cannot
satisfy the metabolic requirement of insulin generation, ultimately
precipitating diabetes.
Previous studies have reported that regulatory T cells are

capable of actively repressing diabetes in NOD mice [43]. In
contrast, Tregs in the peripheral blood are currently not regarded
as a central marker for analysing immune manipulation in T1D
[41, 44]. In lieu of expanding on our current understanding, we
evaluated whether LNT enhanced CD4+CD25+Foxp3+ regulatory
T cells and concluded that LNT triggered an elevation in Treg cell
frequencies but a diminishment in IFN-γ-producing T effector cells
in the spleen, PnLNs and pancreas of NOD mice compared to
untreated controls. Our findings indicated that LNT was capable of
inducing Treg cells from naive CD4+ T cells. Moreover, in vitro
experiments in this study validated the same idea, wherein naive
CD4+ T cells were induced to media containing LNT, which
brought about significant generation of Foxp3+ Treg cells in a
dose-dependent manner (0–100 μg/mL). Of note, in these culture
environments, LNT also attenuated levels of various effector T cell
cytokines, like Il13, Il4, Ifng and Il6, whilst it did not give rise to
potent changes in Il17a mRNA expression.
Although the therapeutic influence of LNT in NOD mice, we

were unable to determine the extent to which Treg cells mediate
LNT’s impacts on diabetes in our work due to critical functions of
this pathway in disease progression and in the limitations of NOD
model. Additionally, it is highly possible that LNT may function via
other mechanisms to depress diabetes in vivo. A number of cell-
surface receptors that initiate immune responses have been
identified, such as the toll-like receptor, Dectin-1, scavenger
receptors, complement receptor 3 and lactosylceramide. The
potential involvement of these receptors in LNT-mediated Treg
cell responses remains to be explored in greater detail in our
future endeavours.
Altogether, the findings obtained in the current study indicate

that LNT, the β-glucan extracted from L. edodes, can suppress T1D
development in NOD mice, which is likely caused by the
preservation of functional β cell mass. Furthermore, LNT could

Fig. 3 LNT promotes Treg cell differentiation in vitro. CD4+ CD25- (naive) T cells of the spleens and PnLNs from C57BL/6 mice were
incubated with anti-CD3 and anti-CD28 for three days in glucose-free DMEM (Ctrl) encompassing 10% FBS-contained or with 50 μg/mL or
100 μg/mL LNT. Representative FACS images (A) and CD25+ Foxp3+ Treg cell frequency in CD4+ T cells (B) after a three-day incubation.
C The absolute numbers of CD25+ Foxp3+ Treg cells. The proportion of cells in the gate was suggested by numbers adjacent to outlines in
the FACS images. D, E Foxp3 mRNA levels at 24 h. F, G Absolute numbers of CD4+ CD25-Foxp3- (Non-Treg) cells. All panels report data
verified in at least two independent experiments. Summary data are summarised as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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effectively up-regulate CD4+CD25+Foxp3+ regulatory T cells in
the spleen, PnLNs and pancreas of NOD mice. Overall, our study
provides the basic framework for future clinical trials for a further
analysis of the anti-diabetic potential of LNT in T1D humans.
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