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Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic
disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin
resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically
be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key
metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism
remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly
suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this
review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current
available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms
a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
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INTRODUCTION
Type 2 diabetes (T2D) is one of world’s most prevalent diseases,
and is related to the epidemic of obesity [1]. Obesity can lead to
the onset of T2D when pancreatic β-cells are no longer able to
compensate higher insulin secretion for the reduced insulin
sensitivity that often accompanies obesity [2]. Over the last
decade, branched-chain amino acids (BCAA) catabolism has
increasingly been considered to have an emerging role in the
development of insulin resistance in people with obesity and T2D.
In these individuals, BCAA levels are considerably elevated in
plasma and tissues [3–9]. Furthermore, elevated BCAA levels in
plasma strongly associate with insulin resistance in people with
obesity and T2D [3, 4, 6–8, 10–13]. Although it is still unknown
why these BCAA levels are elevated and why they associate with
insulin resistance, a dysfunctional BCAA catabolism may be one of
the underlying factors. This review aims to provide insight into the
mechanisms behind elevated plasma BCAA levels in people with
obesity and/or T2D and its role in the pathogenesis of insulin
resistance. Furthermore, this review will overview pharmaceutical
and alternative lifestyle intervention strategies in order to lower
plasma BCAA levels and its effects on metabolic health.

WHY INVESTIGATE BCAA LEVELS?
Leucine, isoleucine and valine are grouped together as BCAA
because they share a structural feature with a branched-side chain
and common initiation steps of catabolism [14].

In general, BCAA play several important metabolic and
physiological roles, aside from being considered as substrates
for synthesis of proteins. Reports show that BCAA act as signaling
molecules regulating metabolism of glucose, lipid, and protein
[15]. In addition, BCAA levels play a key role in interorgan
metabolic crosstalk and, therefore, dysregulation of BCAA
catabolism may play a significant role in several metabolic
diseases [16].
Several studies showed that plasma BCAA levels in overweight

and obese humans with insulin resistance [3–7] and patients with
T2D [8, 9] were elevated compared to healthy individuals.
Recently, in an observational study, we confirmed this finding
and showed that plasma BCAA levels were elevated in patients
with T2D compared to age- and BMI-matched controls without
having T2D [13]. Some [17–19], but not all studies [20, 21] found
elevated plasma BCAA levels to be associated with increased risk
of T2D and suggest that BCAA levels in plasma may predict future
diabetes [17].
It has repeatedly been reported that the accumulation of

plasma BCAA levels strongly associate with insulin resistance in
obesity and T2D [3, 4, 6–8, 10–13]. Similarly, a short-term
intravenous infusion with amino acids in young, human volun-
teers induced temporary insulin resistance [22]. However, as a
mixture of amino acids were infused, it cannot be deduced from
this study whether the BCAA per se are responsible for the
development of insulin resistance. So far, there are no reports
investigating whether particularly a raise of BCAA plasma levels in
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humans induces insulin resistance. Therefore, the underlying
mechanisms of elevated BCAA plasma levels on insulin-stimulated
glucose uptake in humans remain largely unknown.

WHY ARE PLASMA BCAA LEVELS ELEVATED WITH INSULIN
RESISTANCE?
BCAA homeostasis and levels in plasma are defined by BCAA
appearance and disappearance, affected by several processes.
Processes contributing to BCAA appearance in the blood include
protein breakdown in tissues (a process which is inhibited by
insulin), food intake and gut microbial synthesis. The major
processes involved in disappearance of BCAA are protein
synthesis, excretion and BCAA catabolism [4, 23]. As a result, an
interplay between these mechanisms defines the levels of BCAA in
plasma, and therefore multifactorial causes could underlie the
elevated BCAA plasma levels seen in people with insulin resistance
and patients with T2D.

Effect of insulin on protein breakdown and BCAA catabolism
Insulin is known to be one of the most important regulators of
carbohydrate, fat and protein metabolism. Protein metabolism, or
more specifically, protein turnover, is defined by the balance
between protein synthesis and protein breakdown [24]. During
periods of steady state, the rate of protein synthesis equals the
rate of protein breakdown. Both insulin as well as BCAA
concentrations affects protein turnover in muscle [25], adipose
tissue [26] and liver [27].
The effect of insulin on leucine flux has been investigated in

humans with use of an intravenous infusion of insulin combined
with [1-13C] or [1-14C]-leucine tracer [28–30]. An intravenous
insulin infusion in people without diabetes provoked a decline in
the leucine flux due to a reduction in protein breakdown, without
an effect on protein synthesis [28–30]. The activation of protein
kinase B (Akt) in response to insulin by the insulin receptor (IRS-1)
induces phosphorylation of the Forkhead box class (FOXO)
transcription, and indirectly activate mTOR, which seems to be
responsible for the inhibited muscle protein breakdown via
[31–35].
In humans with insulin resistance, the effect of insulin on

reducing muscle protein breakdown is blunted causing increased
muscle wasting [36], as is confirmed in rodent models [37–40].
BCAA are reported to activate the mTOR pathway [41] and
stimulate protein synthesis in muscle of humans. However, the
inhibitory effect of insulin on protein breakdown occurs indepen-
dently of the levels of circulating plasma BCAA [42–44]. Normally,
insulin’s inhibitory action on protein breakdown in muscle tissue
[45–47] results in lower amino acid concentrations in plasma
[42, 48, 49], with the most marked decline seen for BCAA [50–53].
The effect of insulin on BCAA plasma levels has been investigated
for the first time in patients with type 1 diabetes [54, 55] and
results showed that the withdrawal of insulin treatment was
associated with a substantial increase in circulating BCAA
concentrations, as confirmed by others [58, 59]. We recently
confirmed the strong insulin-suppressive effect on BCAA levels in
plasma during a euglycemic hyperinsulinemic clamp in healthy,
insulin sensitive people with obesity, however, this insulin-
suppressive effect was blunted in people with obesity, diagnosed
with non-alcoholic fatty liver (NAFL) and/or T2D [56]. Also others
found less efficient BCAA reduction upon insulin infusion in obese
humans with insulin resistance [57–59]. The suggestion that
increased BCAA levels could merely be a consequence of impaired
insulin action is in accordance with the results from a recent
mendelian randomization study [60], showing that insulin
resistance drives higher plasma BCAA levels [60, 61]. In contrast,
a large-scale human genetic study by Lotta et al. pointed towards
a causal role of diminished BCAA catabolism underlying insulin
resistance [62], which is described below.

Diet and microbiome
BCAA cannot be synthesized by humans and are therefore
essential dietary components that must originate from ingested
food [63]. In addition, gut microbiota is able to produce and
degrade BCAA [64].
Major dietary sources of BCAA include milk, red meat, poultry,

and high fat dairy products [65, 66]. BCAA make up almost 20% of
dietary protein [63]. Since the Western diet is characterized by
high fat and protein intake [3], one could assume that dietary
intake of protein may contribute to changes in plasma BCAA
levels. Indeed, evidence suggests that consumption of dietary
protein increases the risk of diabetes and insulin resistance
[3, 66, 67]. Newgard et al. [3] reported that individuals with obesity
and insulin resistance consumed more protein compared to lean
individuals. Since in the individuals with obesity and insulin
resistance BCAA levels in plasma were increased, this data
matches the assumption that higher protein intake leads to
increase of BCAA in plasma [3]. However, in these studies only
intake of total protein had been assessed, and not the BCAA
consumption. In contrast, others found that BCAA levels were
elevated in individuals with insulin resistance compared to healthy
participants, despite equal rates of protein intake. Furthermore, a
weak correlation was found between BCAA dietary intake and
plasma BCAA levels [4, 19, 65]. McCormack et al. found that
plasma BCAA levels, but not dietary BCAA intake, was associated
with obesity and insulin resistance [19].
Besides direct dietary intake, BCAA can also be metabolized by

the gut microbiome [68–71]. More specifically, a recent study by
Pedersen et al. [70] showed that a gut microbiome having a higher
potential for biosynthesis of BCAA and reduced number of inward
bacterial transporters for these amino acids were associated with
increased levels of BCAA in plasma [70]. Interestingly, increased
potential for BCAA biosynthesis and reduced potential for
bacterial BCAA uptake are both linked with insulin resistance
[70]. Above all, it has been reported that circulating BCAA levels
were increased in mice following transplantation of stool derived
from individuals with insulin resistance [64]. This data indicates
that microbiota indeed contributes to changes in BCAA plasma
levels, in which altered gut microbiota could be another under-
lying cause of elevated BCAA levels in individuals with insulin
resistance.

BCAA catabolism
BCAA catabolism in health. Catabolism of all three BCAA, leucine,
isoleucine and valine, is located inside the mitochondria, in which
the first two steps are common for all BCAA (Fig. 1) [72, 73]. The
first reaction is the reversible transamination catalyzed by the
branched-chain amino acid aminotransferases (BCAT) to form
branched-chain α-keto acids (BCKA): α-ketoisocaproate (α-KIC), α-
keto-B-methylvalerate (α-KMV), and α-ketoisovalerate (α-KIV),
respectively formed out of leucine, isoleucine and valine [74].
The second step is the irreversible oxidative decarboxylation by
the branched-chain α -keto acid dehydrogenase (BCKD) complex,
the rate-limiting enzyme of this pathway [75]. BCKD comprising
three catalytic components (E1, E2 and E3) is regulated by a
phosphorylation-dephosphorylation catalyzing process, whereby
a specific kinase (BCKDK) is responsible for inactivation and a
phosphatase (PPM1K) for activation of this complex [76, 77], both
regulated by nutrient status and BCAA levels itself [78–80]. It has
been reported that phosphorylation occurs in the E1 component
of the BCKD complex, whereas dephosphorylation reaction
interacts with both the E1 and E2 domain [77, 81–83]. Ultimately,
the CoA compounds formed by the BCKD-complex are further
metabolized to acetyl-CoA and succinyl-CoA, which are incorpo-
rated into the tricarboxylic acid (TCA) cycle [84]. TCA cycle fueling
also occurs via the alanine cycle (or termed Cahill cycle), which is
tightly linked to BCAA catabolism. The alanine cycle involves series
of reactions in which amino groups and carbons from skeletal
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muscle are transported to the liver [85]. In short, in skeletal muscle,
the reaction of BCAA to BCKA yields glutamate which then
combines with pyruvate to generate alanine [86]. Alanine is
released by skeletal muscle and taken up by the liver [87, 88],
where it forms an important source for gluconeogenesis [89]. The
glucose produced by the liver is shuttled into the circulation,
taken up by muscle cells [87], and consequently converted back to
glutamate, entering the TCA cycle via α-ketoglutarate [86].
Tissue-specific BCAA metabolism has been investigated in

rodent models. Neinast et al. investigated whole-body BCAA
catabolism in mice using in vivo isotopic tracing and found that
most tissues actively oxidize BCAA, with the largest contribution
likely in skeletal muscle and liver [84]. Other rodent studies
showed that BCAT activity, the enzyme responsible for the BCAA
transamination step, is relatively low in hepatocytes [90]. More-
over, unlike other amino acids, BCAA circumvent first-pass
metabolism in the liver [84], and are primarily transaminated to
BCKA in extra-hepatic tissues since BCAT is mainly expressed in
muscle, kidney and heart tissue in rodents [63, 91, 92]. Next, BCKA
are released back into the circulation and undergo oxidation by
the BCKD complex in the liver [76]. Accordingly, it has been
assumed that the liver of rodents has the highest BCKD activity
[93], however, BCKD is also expressed in white adipose tissue
(WAT) although to a lesser extent [75, 76].
Information on tissue-specific BCAA oxidation in humans is,

however, very limited. In one study, enzymatic activities of BCAT
and BCKD were evaluated in several human-derived tissues and
showed large differences compared to the results observed in
rodent tissues [76]. Thus, Suryawan et al. [76] reported that both
skeletal muscle and liver in humans are key tissues involved in
BCAA catabolism and express BCAT and BCKD, with the highest
expression in muscle, which was also found by others [85].
Furthermore, human heart [94–96] and adipose tissue
[75, 81, 97–102] depend on BCAA oxidative capacity as well.

BCAA catabolism in obesity and T2D. Since the first two steps of
BCAA catabolism are common for all three BCAA, a reduced BCAA
catabolic flux in one of these steps forms a plausible explanation
underlying the rise in plasma BCAA levels of obese insulin resistant
individuals with and without T2D. Indeed, several studies points
towards diminished or altered function of the key enzymes
involved in BCAA catabolism [23, 75, 103–105]. This has been
confirmed in rodent studies showing that increased levels of BCAA
in plasma are the result of reduced expression of BCAT [75, 106] or
lower BCKD complex activity, via either increased expression of
BCKDK [75, 84, 107, 108] or suppression of PPM1K
[80, 103, 109, 110]. Animal models of obesity and T2D as well
show affected BCAA catabolism [75, 111, 112]: tissue-specific
expression of BCAA-catabolic enzymes are shown to be

dysregulated [23, 27, 79, 108, 113–121] especially in adipose
tissue [75, 122] and liver [75, 113]. Moreover, decreased BCAA
catabolism in WAT is assumed to be a contributor to increased
plasma levels of BCAA as seen in obesity and insulin resistance
[75, 81, 97–102, 104]. The capacity of WAT to modulate circulating
BCAA levels has been confirmed by Herman et al. [98], who
demonstrated that transplantation of normal WAT into transgenic
mice with defective peripheral BCAA catabolism reduced circulat-
ing BCAA levels.
Although only limited knowledge derives from human studies,

collecting evidence supports the hypothesis that dysfunctional
BCAA catabolism could underlie a rise in BCAA plasma levels. For
instance, in patients with maple syrup urine disease (MSUD), an
inborn error of metabolism caused by loss-of-function mutation in
components of the BCKD complex [123–126] or its regulatory
phosphatase, PPM1K [127], BCAA levels in plasma are found to be
elevated. Others confirmed that altered activity of BCAT or the
BCKD complex, at least in muscle and liver, plays a role in plasma
BCAA levels [25, 62, 93, 117, 128, 129]. Reduced expression levels
of BCAT were found in skeletal muscle of insulin resistant patients
with T2D, which could explain the observed elevated BCAA
plasma levels [117]. Also expression of PPM1K in skeletal muscle of
people with T2D failed to increase in contrast to healthy controls
during in oral glucose challenge, which could indicate dysregula-
tion of the BCAA pathway [62]. Indeed, gene expression studies
revealed downregulation in multiple steps of the BCAA catabolic
pathway in skeletal muscle of individuals with insulin resistance
[25, 129] and patients with T2D [62]. In addition, individuals with
obesity and/or T2D were shown to have a marked decrease in
BCKD protein content in liver biopsies when compared to the non-
obese control group [93]. In human liver cells, mutation or
deletion of PPM1K resulted in elevated BCAA levels [128].
The BCAA catabolic pathway has also been shown to be

downregulated in WAT of people with obesity [99]. The idea that
BCKD in WAT contributes to changes in BCAA levels in humans is
supported by the fact that BCAA levels in plasma significantly
decreased after bariatric surgery [75, 130], while BCKD expression
in WAT increased [75]. Together, these results demonstrate the
capacity of WAT to modulate circulating BCAA levels. WAT is,
however, suggested to be responsible for less than 5% of whole-
body BCAA oxidation [84], meaning that the increase in plasma
BCAA levels must have additional origins [131].
Others have suggested that reduced BCAA oxidation in adipose

tissue and liver may induce BCAA overflow to skeletal muscle,
driving its BCAA oxidation there [23, 84, 131–133]. Since skeletal
muscle has a high capacity to oxidize BCAA, it could be postulated
that muscle functions as the metabolic sink for impaired BCAA
oxidation in adipose tissue and liver [132]. Interestingly, a recent
study using a heavy isotope steady-state infusion of BCAA,

Fig. 1 Schematic overview of BCAA catabolism. BCAT branched-chain amino acid transaminase, BCKD branched-chain keto acid
dehydrogenase, α-KIC α-ketoisocaproate, α-KMV α-keto-methylvalerate, α-KIV α-ketoisovalerate, 3-HIB 3-hydroxyisobutyrate, BCKDK BCKDK
kinase, PPM1K BCKDK phosphatase. Adapted from Neinast et al. [73].
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showed a shift in BCAA oxidation from adipose tissue and liver
toward skeletal muscle in obese, insulin resistant mice [84],
consistent with the finding that BCKD enzyme activity in liver and
adipose tissue is downregulated in animals with obese/insulin-
resistant or diabetic states [75, 103, 111, 112, 134–138]. This was
also confirmed by She et al. who found that BCKD activity was
decreased in adipose tissue.
Recently, we reported that in vivo whole-body leucine oxidation

rates were significantly lower in patients with T2D compared to
control participants with similar age and BMI [13]. Previously, no
differences were reported between FDR and matched controls
[139] nor between obese and control participants [140]. As
leucine, valine and isoleucine share the same oxidation route via
the BCKD complex, one could assume that in vivo 1-13C leucine
tracer kinetics represent the total BCAA pool [141–143]. Never-
theless, it would be of interest to measure the oxidation rates of
the three individual BCAA (i.e., with 1-13C leucine, 1-13C isoleucine,
and 1-13C isoleucine), which has never been investigated in
humans. Furthermore, as BCAA and BCAA-derived catabolites has
mostly been investigated in plasma, levels in human peripheral
tissues would give more insight into tissue-specific BCAA
catabolism. These considerations highlight the need for future
research to investigate whether tissue-specific BCAA catabolic
defects occur in individuals with obesity, insulin-resistance or T2D
individuals.

HOW DO PLAMSA BCAA LEVELS LINK TO INSULIN
RESISTANCE?
As already mentioned, several reports have been suggested that
increased BCAA levels could merely be a consequence of impaired
insulin [60, 61], however, evidence indicates that plasma BCAAs
act as signaling molecules and contribute to the development of
insulin resistance in humans [3, 5, 22, 25, 144–147]. Several

mechanisms have been hypothesized explaining how plasma
BCAA levels contribute to insulin resistance, which are overviewed
in Fig. 2 and discussed in the following paragraphs.

Dysfunctional mitochondrial BCAA catabolism
We as well as others have repeatedly reported that people with
insulin resistance and patients with T2D feature low muscle
mitochondrial oxidative capacity [13, 148, 149]. The end products
of BCAA catabolism inside the mitochondria, succinyl-CoA and
acetyl-CoA, enter the TCA cycle and are important anaplerotic
substrates fueling the TCA cycle. Defects in BCAA-catabolic
enzymes may cause so-called anaplerotic stress and underlie
low mitochondrial respiratory rates resulting in disturbed glucose
and fat oxidation seen in this population [25, 62], which has been
supported by in vitro studies [150–153]. In humans, it has been
hypothesized that individuals with impaired or incomplete BCAA
metabolism are susceptible to develop insulin resistance [23], in
which anaplerotic stress originating from reduced BCAA-derived
carbon flux to TCA cycle intermediates is an important underlying
factor [23, 138, 154–158]. Additional studies investigating this
concept, are however warranted.
Dysfunctional mitochondrial BCAA catabolism may explain the

accumulation of a number of BCAA-catabolic metabolites in
plasma in insulin-resistant people with obesity or T2D, including
BCAA-derived acylcarnitines (C3 and C5), 3-hydroxyisobutyrate (3-
HIB) and 2-hydroxbutyric acid (2-HB) and 2-ketobutyric acid (2-KB)
[3, 10, 25, 81, 133, 137, 159, 160], which can have toxic effects on
cellular function. It has been shown that acylcarnitines can cause
mitochondrial dysfunction [3, 23, 47, 133, 161–164]. Furthermore,
several studies link defective BCAA catabolism and consequently
accumulation of toxic metabolites to increased lipotoxicity
[109, 127, 128, 165, 166] and insulin resistance
[3, 23, 47, 133, 161–164]. 3-hydroxyisobutyrate (3-HIB), a catabolic
intermediate of valine, can exit the mitochondrion via the covalent

Fig. 2 Schematic overview of mechanisms linking BCAA catabolism with insulin resistance. BCAA branched-chain amino acids, mTOR
mammalian target of rapamycin complex, S6K ribosomal S6 kinase, IRS-1 insulin receptor substrate-1, PDH pyruvate dehydrogenase complex,
GLUT4 glucose transporter type 4.
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binding to CoA [146]. Several reports have indicated an elevation
of 3-HIB in plasma of people with insulin resistance [146, 167]. In
addition, comprehensive metabolic profiling found that 2-HB and
2-KB, both catabolites of methionine/threonine metabolism, are
elevated in individuals with reduced insulin sensitivity [168].
Moreover, in individuals with impaired glucose tolerance, plasma
levels of 2-HB associate with hyperglycemia and insulin sensitivity
and are an early marker for insulin resistance and risk for future
T2D [169–171]. Interestingly, since 2-HB can be produced from
and converted back into 2-KB, and 2-KB is an BCKD substrate, the
increase in these metabolites may reflect impaired BCAA
catabolism [172].
To summarize, dysfunctional mitochondrial BCAA catabolism in

several tissues may cause anaplerotic stress thereby dysregulating
glucose and fat oxidation (Fig. 2). Accumulation of either toxic
BCAA-intermediates may exacerbate mitochondrial dysfunction,
linked to impaired glucose homeostasis and insulin resistance.

Elevated BCAA levels hamper insulin signaling pathways
mTOR/S6K pathway. Both insulin and BCAA are known to
stimulate the activity of mammalian target of rapamycin (mTOR),
although the mechanisms for their action is not completely
understood [173]. In normal conditions, insulin mediates phos-
phorylation of IRS-1, which in turn activates the phosphatidylino-
sitol 3-kinase (PI3K)/Akt pathway [174]. Akt regulates glucose
transport via the phosphorylation of Akt substrate of 160 kDa
(AS160) to trigger GLUT4 translocation from intracellular site to
the surface of the cell [23, 175–177]. In addition, Akt is able to
activate mTOR via phosphorylation of tuberous sclerosis complex
1/2 (TSC 1/2) leading to degradation of Ras homolog enriched in
brain (Rheb) [174], which alleviates the inhibition of mTOR [175].
To summarize, insulin is able to activate mTOR via the PI3K-Akt
signaling pathway [178].
It has been suggested that increased BCAA levels in plasma or

tissue also activate the mTOR pathway, although independently of
TSC regulation [179, 180]. Elevated BCAA levels could lead to
persistent activation of mTOR followed by serine phosphorylation
of IRS-1 via S6 kinase (p70S6K). Phosphorylation of IRS-1 prevents
further Akt-signaling leading to diminished glucose transport and
consequently insulin resistance [181, 182]. Therefore, chronic
accumulation of plasma BCAA levels could impede with the insulin
signaling via activation of the mTOR/p70S6K pathway [181–184]
with leucine as most potent mTOR activator [180].
BCAA-induced activation of the mTOR/p70S6K pathway has

been shown by multiple rodent studies [3, 133, 146, 181, 182,
185, 186] and cell culture experiments [187–189]. In addition,
in vivo and in vitro BCAA deprivation in mice reduced the
activation of the mTOR pathway and increased pAkt in liver and
muscle, resulting in improved insulin sensitivity [190–192].
Interestingly, Newgard et al. reported that dietary BCAA-induced
mTOR activation only occurred in the presence of a high fat load
[3, 104]. Moreover, mTOR-stimulated pAkt activation in muscle
with the consequent development of insulin resistance, solely
occurred when BCAA were supplemented in combination with a
high-fat diet, and not upon BCAA supplementation combined
with chow [3, 104]. Overall, collecting data in preclinical models
support the notion that elevated BCAA availability - especially
under high fat conditions - plays a key role in the development of
insulin resistance, mediated by downregulation of PI3K-Akt
signaling pathway and hyperactivation of the mTOR/p70S6K
pathway.
Evidence for a role of BCAA in mTOR signaling and insulin

resistance in humans is scarce. A short-term infusion of a mixture
of amino acids, including BCAA, activated mTOR paralleled by
reduced peripheral insulin sensitivity in humans [181, 184]. In
addition, Weickert et al. [193] showed that a 6-week high-protein
diet enriched with leucine and isoleucine, induced insulin
resistance with increased p70S6K levels observed in adipose

tissue [193]. Although these results show that BCAA-induced
mTOR activation play a role in the development of insulin
resistance in humans, normalized BCAA plasma levels which
occurred after gastric bypass surgery, did not result in reduced
mTOR activation [159], although insulin resistance improved
substantially in these patients. The excessive weight loss in the
latter study therefore seems to be the driving factor underlying
improved insulin sensitivity, and not the change in BCAA plasma
levels per se.

Inhibition of PDH. Pyruvate dehydrogenase complex (PDH) is the
rate-limiting enzyme involved in glucose oxidation [194], linking
glycolysis to the TCA cycle by transferring pyruvate into acetyl-
coenzyme A (CoA) [94]. A common manifestation in obese
individuals with insulin resistance is the inability to shift from
fatty acid oxidation in the fasted state to glucose oxidation in the
fed state, also called metabolic inflexibility [195]. This fatty acid-
induced suppression of glucose oxidation as well glucose disposal
can be explained by the model of Randle et al. [196]: by-products
of fatty acid oxidation, such as acetyl-CoA, NADH and ATP, act as
potent allosteric inhibitors of glycolysis and PDH [197]. Several
studies in animals reported that accumulation of BCAA and its
derived metabolites can also directly inhibit PDH activity, at least
in liver [153, 198] and heart [94, 152, 199], resulting in a marked
decrease in glucose uptake and oxidation. Moreover, animal
studies show that dysfunctional BCAA oxidation result in
accumulation of BCAA in cardiac tissue and forms a hallmark in
cardiovascular disease [95, 200]. A mouse model with impaired
BCAA oxidation revealed that the chronic accumulation of BCAA in
heart tissue suppressed glucose metabolism [94]. More specifi-
cally, high levels of BCAA selectively disrupted mitochondrial
pyruvate (end product of glucose oxidation) utilization through
inhibition of PDH activity. It has long been established that PDH
activity is a key determinant for insulin resistance of the heart
[201, 202], in which BCAA may play a pivotal role. This link has not
been investigated in humans, however, one study demonstrated
that BCAA concentrations accumulate in failing heart tissue as a
resultant of a coordinated decrease in BCAA oxidative genes [95],
and was associated with impaired cardiac insulin signaling.
However, whether BCAA-inhibited PDH activity played a role,
was not investigated. In addition, one study showed that
supplementing BCAA during exercise as well as during the
recovery period resulted in increased plasma glucose levels due to
reduced glucose uptake in the leg in the recovery period [203].
The authors suggest that the oxidation of supplemented BCAA
resulted in increased BCAA-oxidative derived acetyl-CoA concen-
trations thereby inhibiting PDH activity, however, the elevated
BCAA levels could as well be responsible for reduced pyruvate
utilization.
Although there is evidence that elevated BCAA levels hamper

insulin signaling pathways, it remains still unclear whether
elevated BCAA levels are a cause or rather a consequence of
insulin resistance. Future research, specifically cohort studies,
could provide more information about causality between BCAA
levels and insulin resistance.

EFFECTIVE STRATEGIES TO LOWER BCAA LEVELS
Pharmaceutical strategies
BT2. A compound called 3,6-dichlorobenzo(b)thiopene-2-car-
boxylic acid (BT2) is a small-molecule inhibitor of BCKDK and
accelerates the BCAA catabolic pathway via increased activation of
the BCKD complex (Fig. 3) [95, 204]. Its working mechanism has
been confirmed in obese and diabetes mice models, who report
accelerated BCAA catabolism in skeletal muscle [84, 200], liver,
heart and adipose tissue [105, 107]. In these models, the
administration of BT2 resulted in lower plasma BCAA levels,
improved insulin sensitivity and hyperinsulinemia, and reduced
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hepatic fat levels [105, 107]. Together, these results demonstrate
that BT2 is effective to restore BCAA catabolic activity in various
tissues alleviating the BCAA catabolic defect, and thus improving
insulin sensitivity, irrespective of the site.
Furthermore, several studies administered BT2 in mice with

heart failure [110, 205, 206], and collectively show that dysfunc-
tional BCAA catabolism plays a pivotal role in the development of
cardiac dysfunction. Results show that BT2-induced accelerated
cardiac BCAA catabolism in failing hearts decreased cardiac BCAA
levels, with beneficial effects on heart tissue remodeling,
improved cardiac insulin sensitivity and function
[110, 200, 205, 206]. The mechanisms underlying the cardiometa-
bolic protective effects observed in these studies remain to be
elucidated, however, results point out that restoring dysfunctional
BCAA catabolism optimizes substrate use and attenuates mito-
chondrial function [110, 205, 206]. Interestingly, some studies
show that the beneficial effects of BT2 on improved glucose
metabolism were exerted by reduced mTOR activity and/or via a
reduction in the formation of BCAA-derived toxic metabolites
[110, 205]. To conclude, BT2 is a pharmacological agent which
directly modulate BCAA catabolism via activating BCKD activity. As
BT2 is not suitable for human use, so far, effects of pharmaco-
logically modulating BCAA catabolism on the human heart and
other tissues, as well on glucose homeostasis has not been
investigated in humans.

NaPB. Sodium phenylbutyrate (NaPB) is a commonly used
medication for the treatment of patients with urea cycle disorders
[207]. NaPB is an aromatic fatty acid that is converted in vivo by
β-oxidation into phenylacetate followed by conjugation with
glutamine to form phenylacetylglutamine, which is excreted in the
urine [208]. Via this mechanism NaPB act as an ammonia
scavenger in patients with urea cycle disorders [209]. Interestingly,
it has been demonstrated in mice [210] and human cells [208] that
NaPB, as BT2, also directly enhance BCAA catabolism through
stimulation of the BCKD complex by preventing the phosphoryla-
tion of BCKDK (Fig. 3). Holecek et al. [211] showed that in vitro and
in vivo administration of NaPB resulted in augmented BCAA
catabolism resulting in reduced BCAA levels in plasma and muscle
[211]. In another in vitro study in mice, NaPB treatment resulted in
lower BCAA concentrations paralleled by improved insulin-
stimulated glucose uptake [189, 212] via an improved insulin

signaling in skeletal muscle cells [189]. This result was confirmed
in a diabetic mouse model showing substantial improved glucose
metabolism upon NaPB treatment [213]. These data postulate that
NaPB-induced lowering of BCAA levels alleviate the inhibition of
insulin signaling leading to an improved glucose uptake, in which
skeletal muscle plays an important role.
Although limited research has been performed in humans,

some studies show that NaPB lowers BCAA levels in patients with
urea cycle disorders, patients with MSUD and healthy subjects
[207, 208, 214–217]. In a study with male people with overweight
or obesity, NaPB administration was effective in partially improv-
ing lipid-induced insulin resistance, although circulating plasma
BCAA levels were not measured [218]. As previously done in
mouse skeletal muscle cells [189], it would be of interest to study
effects of NaPB administration on insulin signaling and glucose
uptake in primary human muscle cells, to acquire missing
physiological insights on the metabolic consequences of mod-
ulating BCAA catabolism in humans.

Fibrates. Fibrate is a class of drugs widely used to treat
dyslipidaemia by reducing cholesterol and triglyceride levels,
decreasing the risk for the development of cardiovascular diseases
[219, 220]. Fibrate mechanism of action includes activation of
peroxisome proliferator-activated receptor alpha (PPARα), a
transcriptional factor of genes involved in fatty acid oxidation
[219, 220]. The major adverse effect of the clinical use of fibrates is
the development of myopathy [221–223], however, the patho-
genesis of fibrate-induced myopathy is still unclear.
In rodents, several studies showed that fibrate treatment

decreased BCAA and BCKA plasma levels [224–226] as well in
skeletal muscle and liver tissue [227]. Fibrates inhibit gene
expression of the BCKDK in the liver (Fig. 3) [225, 226, 228–231],
an effect which was not found in skeletal muscle [228]. This could
imply that fibrates enhance BCAA catabolism specifically in
the liver.
Interestingly, it has been shown that fibrate treatment

improved insulin sensitivity in patients with T2D, although the
underlying mechanisms were not investigated [232–234]. Fibrate
treatment decreased the activation of the mTOR/p70S6K pathway
in rats [226], as well lowered BCAA plasma levels in humans [235].
Whether the fibrate-induced improvement in insulin sensitivity is
attributable to improved BCAA catabolism, lower BCAA levels and/

Fig. 3 Schematic overview of pharmaceutical and alternative strategies and their hypothesized way of action to boost BCAA oxidation
and lower BCAA levels. BCAA branched-chain amino acids, mTOR mammalian target of rapamycin complex, S6K ribosomal S6 kinase, IRS-1
insulin receptor substrate-1, PDH pyruvate dehydrogenase complex, GLUT4 glucose transporter type 4, BT2 3,6-dichlorobenzo(b)thiopene-2-
carboxylic acid, NaPB sodium phenylbutyrate, GLP-1 GCR-like peptide-1, GIP glucose-dependent insulinotropic polypeptide.
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or decreased activation of the mTOR-pathway, cannot be deduced
from these studies.

Novel T2D therapies targeting incretin and glucagon receptors. In
recent years, new therapies targeting receptors including GCR-like
peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide
(GIP) and glucagon have been developed. Tirzepatide, a dual GIP
and GLP-1 agonist and potential new glucose-lowering medica-
tion for patients with T2D, has been shown to improve
hyperglycemia [236]. Obese insulin resistant mouse models
feature improved glycaemic control in the presence of reduced
BCAA and BCKA plasma levels upon Trizepatide treatment [237].
The observed effects were accompanied by an increased
expression of BCAT via the p38-MAPK pathway particularly in
BAT (Fig. 3) [237]. Interestingly, in humans, Tirzepatide treatment
reduced BCAA, BCKA and other BCAA-derived metabolites in
plasma, including 3-HIB and 2-HB, previously shown to associate
with insulin resistance and T2D [238]. Together, tirzepatide may
alter expression of genes regulating BCAA catabolism explaining
these results [238]. Also, antagonizing the glucagon receptors has
shown to be effective in improving insulin sensitivity in models of
diabetes and obesity [239]. In failing heart, inhibition of the
glucagon receptor improved insulin-stimulated glucose oxidation
and enhanced cardiac function, which were attributable to an
improved BCAA catabolism via the p38-MAPK pathway [240].
Although these findings suggests that T2D treatment targeting
receptors as GLP-1, GIP and glucagon may activate BCAA
catabolism, future studies will be required to investigate if and
how activated BCAA catabolism helps to improve glycaemic
control upon this treatment in individuals with insulin resistance
and T2D.

Alternative strategies
Physical activity and exercise. Generally, it has been assumed that
amino acids do not contribute substantially to energy supply
during endurance exercise training [241]. In contrast, others
suggest that this assumption may underestimate the role of
proteins and that endurance exercise may result in promotion of
amino acid catabolism in general, and especially the oxidation of
BCAA [242]. To provide energy, endurance training promotes the
transamination of BCAA to BCKA [75], which are further
metabolized into acyl-coenzymes which can enter the TCA cycle
[84]. Indeed, it is well established that endurance exercise training
in rodents [243] and combined endurance and resistance training
in humans with overweight [244] decreased plasma BCAA levels
and toxic intermediates of BCAA catabolism, such as acylcarni-
tines. Consistent with this finding, a recognized effect of
endurance exercise training is an accelerated BCAA catabolism
represented by an increased BCKD activity [245]. More specifically,
it has been found that BCKD is activated due to decreased
phosphorylation by BCKD kinase (Fig. 3) [246–250]. Several
exercise intervention studies in rats found that BCKD complex
was activated in skeletal muscle [78, 251], as well as in liver
[248, 249]. The mechanisms responsible for activating these
enzymes are not fully understood. One report demonstrated that
inactivity potently downregulated expression of BCAA metabolic
genes in mice and vice versa that expression of BCAA metabolic
enzymes were upregulated in response to endurance exercise
training [25]. Contrarily, others suggest that the relative short
exercise training sessions, as performed in the beforementioned
studies, could not underlie altered gene expression or phosphor-
ylation status of the kinase and that other mechanisms are
possibly involved [248, 252].
Recently, we found that levels of BCAA were lower in more

active individuals compared to less active individuals [56], which is
in line with another observational study showing an association
between high physical activity level and low plasma BCAA levels
[253]. Nevertheless, 12-week combined endurance and resistance-

exercise training in people with obesity did not result in decreased
plasma BCAA levels [56]. Although prolonged intense exercise has
been shown to increase the activity of the BCKD complex in
skeletal muscle of trained, healthy individuals [254], this effect
might be blunted in people with insulin resistance. Controversy
does exist on the effect of exercise on BCAA catabolism. Howarth
et al. [255] showed that a single bout of endurance exercise
increased BCKD kinase content in human skeletal muscle, which
was associated with a training-induced decrease in BCKD activity,
although Poortmans et al. did not find a change in plasma BCAA
levels [256]. The inconsistent responses of the different studies
could be explained by different work load, duration of physical
activity and exercise training, and individuals’ training status. In
addition, changes in plasma BCAA levels upon exercise are not a
good reflection of BCAA catabolism since exercise influence
protein turnover, and therefore also BCAA levels. Exercise training
studies combined with stable isotope would elucidate the impact
of exercise on BCAA catabolism. The question, however, remains if
improved BCAA catabolism is involved in the improvement in
metabolic health after physical activity and exercise.

Dietary restriction of BCAA. As mentioned before, diet may
contribute to the elevation of BCAA as observed in humans, and
therefore diet intervention could potentially help to improve
BCAA metabolism. Indeed, it has been shown that restricting
dietary BCAA restores metabolic health, including lower adiposity
and improved insulin sensitivity in obese rodents [257–259]. The
positive metabolic effects were independent of alterations in
BCKD activity [260] suggesting that low protein diets restrict
plasma BCAA levels thereby alleviating its inhibitory effect on
glucose uptake.
In humans, BCAA dietary restriction studies are limited since

feasibility is a challenge: interpretation can be limited in case
nitrogen and caloric content is different between intervention
arms, and therefore any reported effects cannot be asserted as
solely due to BCAA restriction. It has been shown, that BCAA levels
decreased after a weight loss program, but was not related to
changes in BCAA intake [10].
One study reported only modest changes in fasting BCAA levels,

associated with an increase in insulin sensitivity upon short-term
dietary restriction in healthy individuals [261]. Patients with T2D
are characterized by higher plasma BCAA levels compared to
healthy controls and therefore probably may benefit more from a
BCAA restricted diet. Indeed, short-term dietary reduction of BCAA
was effective in decreasing BCAA levels coinciding with improved
postprandial insulin sensitivity and gut microbiome composition
in patients with T2D [262]. Although, reports showed in vivo and
in vitro that lowering BCAA levels alleviates the inhibition of the
insulin signaling pathway by decreasing mTOR/S6K1 signaling
resulting in increased insulin sensitivity [191, 262], when and how
BCAA restriction influences metabolic health, particularly glucose
homeostasis, remains unclear. Long-term studies in humans are
needed to evaluate the safety and the metabolic efficiency in
individuals with obesity and insulin resistance.

Cold acclimatization. Several rodent reports noted that cold
exposure significantly decreases plasma BCAA levels, possibly by
an increased BCAA uptake and oxidation merely located in BAT
[263–266]. Consistent with their findings, it was recently reported
that BCAA are actively utilized in BAT mitochondria for UCP1-
mediated thermogenesis upon cold exposure in mice [266]. In
turn, impaired capacity to take up BCAA and defective BCAA
catabolism in BAT results in impaired BCAA clearance and
thermogenesis leading to impairments in lipid and glucose
metabolism [266, 267]. Thus, besides glucose and fatty acids,
BCAA are likely to be important energy substrates in BAT during
cold exposure, however, the relationship of BCAA metabolism to
thermogenesis is still unclear.
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Also in humans, Yoneshiro et al. [266] observed that cold
exposure for 2 h preferentially decreased BCAA plasma levels in
participants with high BAT activity, suggesting a potential link
between BAT and BCAA metabolism. Surprisingly, muscle mass
showed no correlation with cold-induced changes in BCAA levels
although skeletal muscle is a major organ that utilizes BCAA [266].
Feasibility
To summarize, catabolism and levels of BCAA can be modulated

by several pharmaceutical and alternative strategies, although
their mechanisms are not completely known in humans. Further
research would be needed to study feasibility and optimization for
alternative strategies. As a side note, BT2 and NaPB are the only
interventions able to directly target the BCAA catabolic defect to
improve glucose homeostasis. Other pharmaceutical and alter-
native interventions, known to improve metabolic health, have
also shown to influence BCAA catabolism and levels, however, it
has not yet been investigated whether this improved metabolic
health is attributable to change in BCAA catabolism and levels.

CONCLUSION
Dysregulation of BCAA catabolism is closely related to obesity-
and T2D related metabolic disturbances since BCAA levels plays a
key role in interorgan metabolic crosstalk. Findings from animal
and human studies provided evidence that dysfunctional BCAA
catabolism in several tissues could be a plausible explanation for
the elevated plasma BCAA levels seen in obesity and T2D,
however, huge knowledge gaps exist in tissue-specific BCAA
catabolism in humans. Insulin resistance can occur via dysfunc-
tional BCAA catabolism or BCAA levels acting as signaling
molecules hampering the insulin signaling pathways. Therefore,
exploring intervention strategies to increase BCAA oxidation and/
or lower BCAA levels is important to investigate whether this
could be a new potential strategy in the treatment of metabolic
diseases, including obesity and T2D.
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