Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vasopressin regulates social play behavior in sex-specific ways through glutamate modulation in the lateral septum

Abstract

Understanding the neural basis of social play in juvenile rats may ultimately help restore social play deficits in autistic children. We previously found that administration of a vasopressin (AVP) V1a receptor (V1aR) antagonist into the lateral septum (LS) increased social play behavior in male juvenile rats and decreased it in females. Here, we demonstrate that glutamate, but not GABA, is involved in this sex-specific regulation. First, we found a sex difference in extracellular LS glutamate/GABA ratio (lower in females) that was eliminated by V1aR antagonist infusion in the LS that caused an increase in glutamate release in females only. Second, infusion of the glutamate receptor agonist L-glutamic acid into the LS mimicked the V1aR antagonist-induced decrease in female social play while preventing the increase in male social play. Third, infusion of the glutamate receptor antagonists AP-5 and CNQX into the LS prevented the V1aR antagonist-induced decrease in female social play. Fourth, there were no sex differences in extracellular GABA release in the LS upon either V1aR antagonist infusion or in social play expression upon infusion of the GABA-A receptor agonist muscimol into the LS, suggesting that GABA is not involved in the sex-specific regulation of social play by the LS-AVP system. Last, we found no sex differences in the type (GAD1/2, somatostatin, calbindin 1, Sox9) of V1aR-expressing LS cells, suggesting other cellular mechanisms mediating the sex-specific effects on glutamate release in the LS by the LS-AVP system. In conclusion, we demonstrate that the LS-AVP system regulates social play sex-specifically via glutamatergic neurotransmission. These findings have relevance for potential sex-specific effects of AVP-based treatment of social deficits in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blocking LS-AVP signaling eliminates sex differences in extracellular LS-glutamate concentration and in glutamate/GABA ratio of juvenile rats.
Fig. 2: Blocking LS-AVP signaling induces a sex-specific increase in extracellular glutamate, but not GABA, release.
Fig. 3: Sex-specific effects of LS-glutamate signaling on social play behavior in juvenile rats.
Fig. 4: No sex differences in the percentage of Avpr1a+ cells expressing markers for GABAergic neurons or astrocytes in the dorsal LS of juvenile rats.

Similar content being viewed by others

References

  1. Cordoni G, Palagi E. Ontogenetic trajectories of chimpanzee social play: similarities with humans. PLoS ONE 2011;6:e27344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palagi E, Burghardt GM, Smuts B, Cordoni G, Dall’Olio S, Fouts HN, et al. Rough-and-tumble play as a window on animal communication. Biol Rev Camb Philos Soc. 2016;91:311–27.

    Article  PubMed  Google Scholar 

  3. Pellegrini AD. Elementary-school children’s rough-and-tumble play and social competence. Dev Psychol. 1988;24:802–6.

    Article  Google Scholar 

  4. Suomi SJ, Harlow HF. Depressive behavior in young monkeys subjected to vertical chamber confinement. J Comp Physiol Psychol. 1972;80:11–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sigman M, Ruskin E, Arbeile S, Corona R, Dissanayake C, Espinosa M, et al. Continuity and change in the social competence of children with autism, Down syndrome, and developmental delays. Monogr Soc Res Child Dev. 1999;64:1–114.

    Article  CAS  PubMed  Google Scholar 

  6. Hol T, Van den Berg CL, Van Ree JM, Spruijt BM. Isolation during the play period in infancy decreases adult social interactions in rats. Behav Brain Res. 1999;100:91–7.

    Article  CAS  PubMed  Google Scholar 

  7. Guralnick MJ, Connor RT, Neville B, Hammond MA. Promoting the peer-related social development of young children with mild developmental delays: effectiveness of a comprehensive intervention. Am J Ment Retard. 2006;111:336–56.

    Article  PubMed  Google Scholar 

  8. van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM. Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol. 1999;34:129–38.

    Article  PubMed  Google Scholar 

  9. Achterberg EJM, van Kerkhof LWM, Servadio M, van Swieten MMH, Houwing DJ, Aalderink M, et al. Contrasting roles of dopamine and noradrenaline in the motivational properties of social play behavior in rats. Neuropsychopharmacology 2016;41:858–68.

    Article  CAS  PubMed  Google Scholar 

  10. Calcagnetti DJ, Schechter MD. Place conditioning reveals the rewarding aspect of social interaction in juvenile rats. Physiol Behav. 1992;51:667–72.

    Article  CAS  PubMed  Google Scholar 

  11. Ikemoto S, Panksepp J. The effects of early social isolation on the motivation for social play in juvenile rats. Dev Psychobiol. 1992;25:261–74.

    Article  CAS  PubMed  Google Scholar 

  12. Normansell L, Panksepp J. Effects of morphine and naloxone on play-rewarded spatial discrimination in juvenile rats. Dev Psychobiol. 1990;23:75–83.

    Article  CAS  PubMed  Google Scholar 

  13. Trezza V, Damsteegt R, Vanderschuren LJMJ. Conditioned place preference induced by social play behavior: parametrics, extinction, reinstatement and disruption by methylphenidate. Eur Neuropsychopharmacol. 2009;19:659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan R. Social play and autistic spectrum disorders: a perspective on theory, implications and educational approaches. Autism 2003;7:347–60.

    Article  PubMed  Google Scholar 

  15. Mundy P. Joint attention and social-emotional approach behavior in children with autism. Dev Psychopathol. 1995;7:63–82.

    Article  Google Scholar 

  16. Nijhof AD, Bird G. Self-processing in individuals with autism spectrum disorder. Autism Res. 2019;12:1580–4.

    Article  PubMed  Google Scholar 

  17. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT. The social motivation theory of autism. Trends Cogn Sci. 2012;16:231–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kohls G, Chevallier C, Troiani V, Schultz RT. Social “wanting” dysfunction in autism: neurobiological underpinnings and treatment implications. J Neurodev Disord. 2012;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kohls G, Schulte-Rüther M, Nehrkorn B, Müller K, Fink GR, Kamp-Becker I, et al. Reward system dysfunction in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:565–72.

    Article  PubMed  Google Scholar 

  20. Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J Child Psychol Psychiatry. 2003;44:1092–115.

    Article  PubMed  Google Scholar 

  21. Parker KJ, Oztan O, Libove RA, Mohsin N, Karhson DS, Sumiyoshi RD, et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci Transl Med. 2019;11:eaau7356.

  22. Parker KJ, Garner JP, Oztan O, Tarara ER, Li J, Sclafani V, et al. Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Sci Transl Med. 2018;10:eaam9100.

  23. Oztan O, Garner JP, Partap S, Sherr EH, Hardan AY, Farmer C, et al. Cerebrospinal fluid vasopressin and symptom severity in children with autism. Ann Neurol. 2018;84:611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oztan O, Garner JP, Constantino JN, Parker KJ. Neonatal CSF vasopressin concentration predicts later medical record diagnoses of autism spectrum disorder. Proc Natl Acad Sci USA. 2020;117:10609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol. 2016;40:1–23.

    Article  CAS  PubMed  Google Scholar 

  26. Bredewold R, Veenema AH. Sex differences in the regulation of social and anxiety-related behaviors: insights from vasopressin and oxytocin brain systems. Curr Opin Neurobiol. 2018;49:132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bredewold R, Schiavo JK, van der Hart M, Verreij M, Veenema AH. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior. Neuroscience 2015;307:117–27.

    Article  CAS  PubMed  Google Scholar 

  28. Bredewold R, Smith CJW, Dumais KM, Veenema AH. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Front Behav Neurosci. 2014;8:216.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Veenema AH, Bredewold R, De Vries GJ. Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology 2013;38:2554–61.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng S-Y, Delville Y. Vasopressin facilitates play fighting in juvenile golden hamsters. Physiol Behav. 2009;98:242–6.

    Article  CAS  PubMed  Google Scholar 

  31. Beatty WW, Dodge AM, Traylor KL, Donegan JC, Godding PR. Septal lesions increase play fighting in juvenile rats. Physiol Behav. 1982;28:649–52.

    Article  CAS  PubMed  Google Scholar 

  32. Joëls M, Urban IJ. Arginine-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli. Brain Res. 1984;311:201–9.

    Article  PubMed  Google Scholar 

  33. Joëls M, Urban IJ. The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat. Neurosci Lett. 1982;33:79–84.

    Article  PubMed  Google Scholar 

  34. Joëls M, Urban IJ. Monoamine-induced responses in lateral septal neurons: influence of iontophoretically applied vasopressin. Brain Res. 1985;344:120–6.

    Article  PubMed  Google Scholar 

  35. Allaman-Exertier G, Reymond-Marron I, Tribollet E, Raggenbass M. Vasopressin modulates lateral septal network activity via two distinct electrophysiological mechanisms. Eur J Neurosci. 2007;26:2633–42.

    Article  CAS  PubMed  Google Scholar 

  36. Risold PY, Swanson LW. Chemoarchitecture of the rat lateral septal nucleus. Brain Res Brain Res Rev. 1997;24:91–113.

    Article  CAS  PubMed  Google Scholar 

  37. Garrido Sanabria ER, Castañeda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 2006;142:871–83.

    Article  CAS  PubMed  Google Scholar 

  38. Veenema AH, Neumann ID. Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology 2009;34:463–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lukas M, Bredewold R, Landgraf R, Neumann ID, Veenema AH. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology 2011;36:843–53.

    Article  CAS  PubMed  Google Scholar 

  40. Manning M, Stoev S, Chini B, Durroux T, Mouillac B, Guillon G. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res 2008;170:473–512.

    Article  CAS  PubMed  Google Scholar 

  41. Veenema AH, Bredewold R, De Vries GJ. Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways. Horm Behav. 2012;61:50–56.

    Article  CAS  PubMed  Google Scholar 

  42. Stanley BG, Ha LH, Spears LC, Dee MG. Lateral hypothalamic injections of glutamate, kainic acid, D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res. 1993;613:88–95.

    Article  CAS  PubMed  Google Scholar 

  43. Numan M, Bress JA, Ranker LR, Gary AJ, Denicola AL, Bettis JK, et al. The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behav Brain Res. 2010;214:368–76.

    Article  PubMed  Google Scholar 

  44. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press; 2007.

    Google Scholar 

  45. Bredewold R, Nascimento NF, Ro GS, Cieslewski SE, Reppucci CJ, Veenema AH. Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology 2018;43:2109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reppucci CJ, Gergely CK, Bredewold R, Veenema AH. Involvement of orexin/hypocretin in the expression of social play behaviour in juvenile rats. Int J Play. 2020;9:108–27.

  47. Reppucci CJ, Gergely CK, Veenema AH. Activation patterns of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile male and female rats. J Neuroendocrinol. 2018. https://doi.org/10.1111/jne.12582.

  48. De Vries GJ, Boyle PA. Double duty for sex differences in the brain. Behav Brain Res. 1998;92:205–13.

    Article  PubMed  Google Scholar 

  49. De Vries GJ. Minireview: Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 2004;145:1063–8.

    Article  PubMed  Google Scholar 

  50. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015;87:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  CAS  PubMed  Google Scholar 

  52. Robertson CE, Ratai EM, Kanwisher N. Reduced gabaergic action in the autistic brain. Curr Biol. 2016;26:80–85.

    Article  CAS  PubMed  Google Scholar 

  53. Cohen Kadosh K, Krause B, King AJ, Near J, Cohen Kadosh R. Linking GABA and glutamate levels to cognitive skill acquisition during development. Hum Brain Mapp. 2015;36:4334–45.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zaczek R, Hedreen JC, Coyle JT. Evidence for a hippocampal-septal glutamatergic pathway in the rat. Exp Neurol. 1979;65:145–56.

    Article  CAS  PubMed  Google Scholar 

  55. Gallagher JP, Zheng F, Hasuo H, Shinnick-Gallagher P. Activities of neurons within the rat dorsolateral septal nucleus (DLSN). Prog Neurobiol. 1995;45:373–95.

    Article  CAS  PubMed  Google Scholar 

  56. Chee MJS, Arrigoni E, Maratos-Flier E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci. 2015;35:3644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Besnard A, Gao Y, TaeWoo Kim M, Twarkowski H, Reed AK, Langberg T, et al. Dorsolateral septum somatostatin interneurons gate mobility to calibrate context-specific behavioral fear responses. Nat Neurosci. 2019;22:436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. An M, Kim H-K, Park H, Kim K, Heo G, Park H-E, et al. Lateral septum somatostatin neurons are activated by diverse stressors. Exp Neurobiol. 2022;31:376–89.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Borie AM, Dromard Y, Guillon G, Olma A, Manning M, Muscatelli F, et al. Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model. J Clin Invest. 2021;131:e144450.

  60. Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N, et al. SOX9 Is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci. 2017;37:4493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8:184.

  62. DiBenedictis BT, Nussbaum ER, Cheung HK, Veenema AH. Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. J Comp Neurol. 2017;525:2549–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen X, Pittman QJ. Vasopressin and amastatin induce V(1)-receptor-mediated suppression of excitatory transmission in the rat parabrachial nucleus. J Neurophysiol. 1999;82:1689–96.

    Article  CAS  PubMed  Google Scholar 

  64. Bailey TW, Jin Y-H, Doyle MW, Smith SM, Andresen MC. Vasopressin inhibits glutamate release via two distinct modes in the brainstem. J Neurosci. 2006;26:6131–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev. 2004;46:71–117.

    Article  PubMed  Google Scholar 

  66. Yoon YJ, Gokin AP, Martin-Caraballo M. Pharmacological manipulation of GABA-driven activity in ovo disrupts the development of dendritic morphology but not the maturation of spinal cord network activity. Neural Dev. 2010;5:11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Achterberg EJM, van Swieten MMH, Driel NV, Trezza V, Vanderschuren LJMJ. Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharm Res. 2016;110:151–8.

    Article  CAS  Google Scholar 

  68. Achterberg EJM, van Swieten MMH, Houwing DJ, Trezza V, Vanderschuren LJMJ. Opioid modulation of social play reward in juvenile rats. Neuropharmacology 2019;159:107332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jennifer Schiavo, Michelle Verreij, and Nara Nascimento for technical assistance, members of the Veenema lab for input and critically reading the manuscript, Dr. Maurice Manning (Toledo, OH) for kindly providing the V1aR antagonists, and animal caretakers for excellent animal care.

Funding

This research was supported by NARSAD Grant 17382, NSF IOS1253386, and NIH R01MH102456 to AHV.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and C.W. performed experiments. R.B. and A.V. developed the concept, analyzed the data and wrote the manuscript. A.V. conceived the project and supervised all aspects of the project.

Corresponding author

Correspondence to Alexa H. Veenema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredewold, R., Washington, C. & Veenema, A.H. Vasopressin regulates social play behavior in sex-specific ways through glutamate modulation in the lateral septum. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01987-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01987-z

Search

Quick links