Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytic RARγ mediates hippocampal astrocytosis and neurogenesis deficits in chronic retinoic acid-induced depression

Abstract

Accumulating clinical evidence indicates that chronic exposure to retinoic acid (RA) may lead to depressive symptoms and even increase the risk of suicidal behavior, which severely limits the clinical long-term application of RA. The exact mechanisms through which RA contributes to the onset of depression remain largely unclear. Here, we administered intraperitoneal injections of all-trans RA to male C57BL/6 J mice over a period of 21 days. Mice subjected to chronic RA exposure displayed depressive-like behaviors, accompanied by impaired hippocampal neurogenesis and heightened RA receptor gamma (RARγ) levels in the ventral hippocampus (vHip). The administration of an RARγ antagonist effectively mitigated these RA-induced neurogenesis impairments and depressive-like behaviors. Chronic exposure to RA was also observed to promote hippocampal astrocytosis and increase astrocytic Rarγ expression in the ventral dentate gyrus (vDG) of hippocampus. Notably, astrocytic RARγ in the vDG was found to be a key factor in the observed hippocampal astrocytosis and neurogenesis impairments, and depressive-like behaviors. Chronic exposure to RA resulted in increased extracellular glutamate levels in neural stem cells (NSCs), accompanied by a decrease in glutamate transporter 1 (GLT-1) expression. Enhancing astrocytic GLT-1 expression was found to alleviate both hippocampal astrocytosis and depressive-like behaviors caused by RA. These findings underscore the critical role of astrocytic RARγ-GLT-1 axis in the development of hippocampal astrocytosis, neurogenesis impairments, and depressive symptoms, suggesting that targeting RARγ-GLT-1 could potentially offer an effective therapeutic approach for depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic RA-induced depressive mice exhibit hippocampal neurogenesis deficits and upregulation of RARγ expression.
Fig. 2: RARγ antagonist, but not RARα or RARβ antagonist, effectively reverses hippocampal neurogenesis deficits in the RA-induced depressive mouse.
Fig. 3: Knocking down astrocytic RARγ alleviates RA-induced hippocampal astrocytosis, neurogenesis deficits and depressive-like behaviors.
Fig. 4: Overexpression of astrocytic RARγ directly induces hippocampal astrocytosis, neurogenesis deficits and depressive-like behaviors.
Fig. 5: Astrocytic RARγ induces hippocampal astrocytosis and depression by suppressing GLT-1 expression in the vDG.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Marx W, Penninx B, Solmi M, Furukawa TA, Firth J, Carvalho AF. Major depressive disorder. Nat Rev Dis Primers. 2023;9:44.

    Article  PubMed  Google Scholar 

  2. Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuro-Psychoph. 2008;32:315–31.

    Article  CAS  Google Scholar 

  3. Kutny MA, Alonzo TA, Abla O, Rajpurkar M, Gerbing RB, Wang YC. Assessment of arsenic trioxide and all-trans retinoic acid for the treatment of pediatric acute promyelocytic leukemia: a report from the children’s oncology group aaml1331 trial. JAMA Oncol. 2022;8:79–87.

    Article  PubMed  Google Scholar 

  4. Kocher HM, Basu B, Froeling F, Sarker D, Slater S, Carlin D. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer. Nat Commun. 2020;11:4841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones H, Blanc D, Cunliffe WJ. 13-cis retinoic acid and acne. Lancet. 1980;2:1048–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bremner JD. Isotretinoin and neuropsychiatric side effects: continued vigilance is needed. J Affect Disord Rep. 2021;6:100230.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wysowski DK, Swartz L. Relationship between headache and depression in users of isotretinoin. Arch Dermatol. 2005;141:640–1.

    Article  PubMed  Google Scholar 

  8. Otto LR, Clemens V, Usekes B, Cosma NC, Regen F, Hellmann-Regen J. Retinoid homeostasis in major depressive disorder. Transl Psychiat. 2023;13:67.

    Article  CAS  Google Scholar 

  9. Lenz M, Kruse P, Eichler A, Straehle J, Beck J, Deller T. All-trans retinoic acid induces synaptic plasticity in human cortical neurons. Elife. 2021;10:e63026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu P, Liu J, Zhao J, Qi XR, Qi CC, Lucassen PJ. All-trans retinoic acid-induced hypothalamus-pituitary-adrenal hyperactivity involves glucocorticoid receptor dysregulation. Transl Psychiat. 2013;3:e336.

    Article  CAS  Google Scholar 

  11. Priyanka SH, Syam DS, Thushara AJ, Rauf AA, Indira M. All trans retinoic acid attenuates markers of neuroinflammation in rat brain by modulation of sirt1 and NF-kappaB. Neurochem Res. 2018;43:1791–801.

    Article  CAS  PubMed  Google Scholar 

  12. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berger T, Lee H, Young AH, Aarsland D, Thuret S. Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med. 2020;26:803–18.

    Article  PubMed  Google Scholar 

  14. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 2017;18:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boldrini M, Galfalvy H, Dwork AJ, Rosoklija GB, Trencevska-Ivanovska I, Pavlovski G. Resilience is associated with larger dentate gyrus, while suicide decedents with major depressive disorder have fewer granule neurons. Biol Psychiat. 2019;85:850–62.

    Article  PubMed  Google Scholar 

  16. Tanti A, Westphal WP, Girault V, Brizard B, Devers S, Leguisquet AM. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus. 2013;23:797–811.

    Article  CAS  PubMed  Google Scholar 

  17. Tanti A, Rainer Q, Minier F, Surget A, Belzung C. Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology. 2012;63:374–84.

    Article  CAS  PubMed  Google Scholar 

  18. Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult neurogenesis and psychiatric disorders. Csh Perspect Biol. 2016;8:a019026.

    Google Scholar 

  19. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiat. 2008;64:293–301.

    Article  CAS  PubMed  Google Scholar 

  20. Crandall J, Sakai Y, Zhang J, Koul O, Mineur Y, Crusio WE. 13-cis-retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. Proc Natl Acad Sci USA. 2004;101:5111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakai Y, Crandall JE, Brodsky J, McCaffery P. 13-cis retinoic acid (Accutane) suppresses hippocampal cell survival in mice. Ann NY Acad Sci. 2004;1021:436–40.

    Article  CAS  PubMed  Google Scholar 

  22. Hu P, Wang Y, Liu J, Meng FT, Qi XR, Chen L. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus. 2016;26:911–23.

    Article  CAS  PubMed  Google Scholar 

  23. Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98:239–389.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: the purinergic avenue. Neuropharmacology. 2022;220:109252.

    Article  CAS  PubMed  Google Scholar 

  25. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novakovic MM, Korshunov KS, Grant RA, Martin ME, Valencia HA, Budinger G. Astrocyte reactivity and inflammation-induced depression-like behaviors are regulated by orai1 calcium channels. Nat Commun. 2023;14:5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46:957–67.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Ni J, Zhai L, Gao C, Xie L, Zhao L. Inhibition of activated astrocyte ameliorates lipopolysaccharide- induced depressive-like behaviors. J Affect Disorders. 2019;242:52–9.

    Article  CAS  PubMed  Google Scholar 

  29. de Rivero VJ, Minkiewicz J, Wang X, De Rivero VJ, German R, Marcillo AE. Astrogliosis involves activation of retinoic acid-inducible gene-like signaling in the innate immune response after spinal cord injury. Glia. 2012;60:414–21.

    Article  Google Scholar 

  30. Fan J, Guo F, Mo R, Chen LY, Mo JW, Lu CL. O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. J Clin Invest. 2023;133:e160016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M. Astrocyte-derived atp modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lu CL, Ren J, Mo JW, Fan J, Guo F, Chen LY. Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability. Biol Psychiat. 2022;92:204–15.

    Article  CAS  PubMed  Google Scholar 

  33. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab. 2023;5:2220–36.

    Article  CAS  PubMed  Google Scholar 

  35. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J Vis Exp. 2012;59:e3769.

    Google Scholar 

  36. Cheng J, Scala F, Blanco FA, Niu S, Firozi K, Keehan L. The Rac-GEF tiam1 promotes dendrite and synapse stabilization of dentate granule cells and restricts hippocampal-dependent memory functions. J Neurosci. 2021;41:1191–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu X, Nedelcovych MT, Thomas AG, Hasegawa Y, Moreno-Megui A, Coomer W. Jhu-083 selectively blocks glutaminase activity in brain cd11b(+) cells and prevents depression-associated behaviors induced by chronic social defeat stress. Neuropsychopharmacol. 2019;44:683–94.

    Article  CAS  Google Scholar 

  38. Golden SA, Covington HR, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Kang S, Choi TY, Chang KA, Koo JW. Metabotropic glutamate receptor 5 in amygdala target neurons regulates susceptibility to chronic social stress. Biol Psychiat. 2022;92:104–15.

    Article  CAS  PubMed  Google Scholar 

  40. Shen CJ, Zheng D, Li KX, Yang JM, Pan HQ, Yu XD. Cannabinoid CB(1) receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med. 2019;25:337–49.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Lin Z, Wang Z, Ye L, Xian M, Xiao L. Rargamma activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood. 2022;139:59–72.

    Article  CAS  PubMed  Google Scholar 

  42. Asrican B, Wooten J, Li YD, Quintanilla L, Zhang F, Wander C. Neuropeptides modulate local astrocytes to regulate adult hippocampal neural stem cells. Neuron. 2020;108:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan TJ, Her LS, Liaw HJ, Chen MC, Tzeng SF. Retinoic acid mediates the expression of glutamate transporter-1 in rat astrocytes through genomic RXR action and non-genomic protein kinase c signaling pathway. J Neurochem. 2012;121:537–50.

    Article  CAS  PubMed  Google Scholar 

  44. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Muller JA. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods. 2018;15:936–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012;35:733–41.

    Article  CAS  PubMed  Google Scholar 

  46. Hu P, van Dam AM, Wang Y, Lucassen PJ, Zhou JN. Retinoic acid and depressive disorders: evidence and possible neurobiological mechanisms. Neurosci Biobehav R. 2020;112:376–91.

    Article  CAS  Google Scholar 

  47. Sundstrom A, Alfredsson L, Sjolin-Forsberg G, Gerden B, Bergman U, Jokinen J. Association of suicide attempts with acne and treatment with isotretinoin: retrospective Swedish cohort study. BMJ. 2010;341:c5812.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.

    Article  CAS  PubMed  Google Scholar 

  49. Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature. 2021;598:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li S, Fang Y, Zhang Y, Song M, Zhang X, Ding X. Microglial nlrp3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep. 2022;41:111532.

    Article  CAS  PubMed  Google Scholar 

  51. Yu G, Cao F, Hou T, Cheng Y, Jia B, Yu L. Astrocyte reactivation in medial prefrontal cortex contributes to obesity-promoted depressive-like behaviors. J Neuroinflamm. 2022;19:166.

    Article  CAS  Google Scholar 

  52. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417:39–44.

    Article  CAS  PubMed  Google Scholar 

  53. Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. Nmda receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron. 2010;65:859–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacol. 2015;40:1569–79.

    Article  CAS  Google Scholar 

  55. Ghezali G, Dallerac G, Rouach N. Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct. 2016;221:2427–42.

    Article  PubMed  Google Scholar 

  56. Fullana MN, Ruiz-Bronchal E, Ferres-Coy A, Juarez-Escoto E, Artigas F, Bortolozzi A. Regionally selective knockdown of astroglial glutamate transporters in infralimbic cortex induces a depressive phenotype in mice. Glia. 2019;67:1122–37.

    Article  PubMed  Google Scholar 

  57. Huang YJ, Hung CC, Hsu PC, Lee PY, Tsai YA, Hsin YC. Astrocytic aryl hydrocarbon receptor mediates chronic kidney disease-associated mental disorders involving glt1 hypofunction and neuronal activity enhancement in the mouse brain. Glia. 2023;71:1057–80.

    Article  CAS  PubMed  Google Scholar 

  58. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Gene Dev. 2006;20:1405–28.

    Article  CAS  PubMed  Google Scholar 

  59. Yasuhara R, Yuasa T, Williams JA, Byers SW, Shah S, Pacifici M. Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem. 2010;285:317–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chunhua Yuan, Lirong Sun, Shuji Li, Yingying Fang, and Ting Guo (Southern Medical University) for their technical support.

Funding

The work was supported by the National Natural Science Foundation of China (81971234), Natural Science Foundation of Guangdong Province, China (2022A1515012248), the Key Area Research and Development Program of Guangdong Province (2018B030334001 and 2018B030340001), the Science and Technology Program of Guangzhou (202007030013), and Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders (2023B1212120004).

Author information

Authors and Affiliations

Authors

Contributions

XMW and HXH designed the study and wrote the paper. BT reviewed and edited the manuscript. HXH analyzed the data. HXH performed most of the experiments with the help of WSL and RL. RL and YYZ performed the real-time quantitative PCR experiment. XHS performed some immunofluorescence experiments. YQZ was responsible for animal care. XYZ performed HPLC experiment with the help of YYZ. XMW and BT supervised all phases of the project.

Corresponding authors

Correspondence to Bo Tian or Xuemin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lu, W., Luo, R. et al. Astrocytic RARγ mediates hippocampal astrocytosis and neurogenesis deficits in chronic retinoic acid-induced depression. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01983-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01983-3

Search

Quick links