Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leveraging ultra-high field (7T) MRI in psychiatric research

Abstract

Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural mechanisms associated with neurophysiological alterations in psychiatric disorders.
Fig. 2: Comparison of 7 T vs 3 T anatomical images across brain regions and modalities.
Fig. 3: 1H MRS acquired at 7T.
Fig. 4: Example 31P MRS spectrum.

Similar content being viewed by others

References

  1. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022. 16 March 2022. https://doi.org/10.1038/s41586-022-04492-9.

  2. Tervo-Clemmens B, Marek S, Barch DM. Tailoring Psychiatric Neuroimaging to Translational Goals. JAMA Psychiatry. 2023;80:765–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lavigne KM, Kanagasabai K, Palaniyappan L. Ultra-high field neuroimaging in psychosis: A narrative review. Front Psychiatry. 2022;13:994372.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Palaniyappan L, Kanagasabai K, Lavigne KM Chapter 36 - Psychiatric applications of ultra-high field MR neuroimaging. In: Markenroth Bloch K, Guye M, Poser BA, editors. Adv. Magn. Reson. Technol. Appl., vol. 10, Academic Press; 2023. p. 563–74.

  5. Federau C, Gallichan D. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain. PLOS ONE. 2016;11:e0154974.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Whiting ME, Mettenburg J, Novelli EM, Santini T, Martins T, Ibrahim TS, et al. Inducing Vascular Grammars for Anomaly Classification in Brain Angiograms. J Eng Sci Med Diagn Ther. 2022;5:021002.

    PubMed  PubMed Central  Google Scholar 

  7. Wang ZI, Oh S-H, Lowe M, Larvie M, Ruggieri P, Hill V, et al. Radiological and Clinical Value of 7T MRI for Evaluating 3T-Visible Lesions in Pharmacoresistant Focal Epilepsies. Front Neurol. 2021;12:591586.

  8. Mulder MJ, Keuken MC, Bazin P-L, Alkemade A, Forstmann BU. Size and shape matter: The impact of voxel geometry on the identification of small nuclei. PloS One. 2019;14:e0215382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Zwaag W, Schäfer A, Marques JP, Turner R, Trampel R. Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed. 2016;29:1274–88.

    Article  PubMed  Google Scholar 

  10. Bahrami K, Shi F, Rekik I, Gao Y, Shen D. 7T‐guided super‐resolution of 3T MRI. Med Phys. 2017;44:1661–77.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liang L, Silva AM, Jeon P, Ford SD, MacKinley M, Théberge J, et al. Widespread cortical thinning, excessive glutamate and impaired linguistic functioning in schizophrenia: A cluster analytic approach. Front Hum Neurosci. 2022;16:954898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palaniyappan L, Al-Radaideh A, Gowland PA, Liddle PF. Cortical thickness and formal thought disorder in schizophrenia: An ultra high-field network-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry. 2020;101:109911.

    Article  PubMed  Google Scholar 

  13. Iwabuchi S, Liddle PF, Palaniyappan L Clinical Utility of Machine-Learning Approaches in Schizophrenia: Improving Diagnostic Confidence for Translational Neuroimaging. Front Psychiatry. 2013;4:95.

  14. DeKraker J, Ferko KM, Lau JC, Köhler S, Khan AR. Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping. NeuroImage. 2018;167:408–18.

    Article  PubMed  Google Scholar 

  15. Santini T, Koo M, Farhat N, Campos VP, Alkhateeb S, Vieira MAC, et al. Analysis of hippocampal subfields in sickle cell disease using ultrahigh field MRI. NeuroImage Clin. 2021;30:102655.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus. 2009;19:549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wisse LEM, Kuijf HJ, Honingh AM, Wang H, Pluta JB, Das SR, et al. Automated Hippocampal Subfield Segmentation at 7T MRI. Am J Neuroradiol. 2016;37:1050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barch DM, Tillman R, Kelly D, Whalen D, Gilbert K, Luby JL. Hippocampal volume and depression among young children. Psychiatry Res Neuroimaging. 2019;288:21–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011;16:252–64.

    Article  CAS  PubMed  Google Scholar 

  20. Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K, et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry. 2000;48:147–62.

    Article  CAS  PubMed  Google Scholar 

  21. Arnold SJM, Ivleva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Sacco CB, et al. Hippocampal Volume Is Reduced in Schizophrenia and Schizoaffective Disorder But Not in Psychotic Bipolar I Disorder Demonstrated by Both Manual Tracing and Automated Parcellation (FreeSurfer). Schizophr Bull. 2015;41:233–49.

    Article  PubMed  Google Scholar 

  22. Prasad KM, Muldoon B, Theis N, Iyengar S, Keshavan MS. Multipronged investigation of morphometry and connectivity of hippocampal network in relation to risk for psychosis using ultrahigh field MRI. Schizophr Res. 2023;256:88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brunner G, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, et al. Hippocampal structural alterations in early-stage psychosis: Specificity and relationship to clinical outcomes. NeuroImage Clin. 2022;35:103087.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, et al. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110297.

    Article  CAS  PubMed  Google Scholar 

  25. Alper J, Feng R, Verma G, Rutter S, Huang K-H, Xie L, et al. Stress-related reduction of hippocampal subfield volumes in major depressive disorder: A 7-Tesla study. Front Psychiatry. 2023;14:1060770.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nuninga JO, Mandl RCW, Boks MP, Bakker S, Somers M, Heringa SM, et al. Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry. 2020;25:1559–68.

    Article  PubMed  Google Scholar 

  27. Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, et al. Psychosocial factors and hippocampal subfields: The Medea‐7T study. Hum Brain Mapp. 2022;44:1964–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Isaacs, Mulder BR, Groot MJ, Berendonk JM, van N, Lute N, et al. 3 versus 7 Tesla magnetic resonance imaging for parcellations of subcortical brain structures in clinical settings. PLOS ONE. 2020;15:e0236208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trutti AC, Fontanesi L, Mulder MJ, Bazin P-L, Hommel B, Forstmann BU. A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data. Brain Struct Funct. 2021;226:1155–67.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maruyama S, Fukunaga M, Fautz H-P, Heidemann R, Sadato N. Comparison of 3T and 7T MRI for the visualization of globus pallidus sub-segments. Sci Rep. 2019;9:18357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forstmann BU, Isaacs BR, Temel Y. Ultra High Field MRI-Guided Deep Brain Stimulation. Trends Biotechnol. 2017;35:904–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jalbrzikowski M, Larsen B, Hallquist MN, Foran W, Calabro F, Luna B. Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: associations with anxiety and depression. Biol Psychiatry. 2017;82:511–21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage. 2017;155:370–82.

    Article  CAS  PubMed  Google Scholar 

  34. Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, et al. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with Major Depressive Disorder symptom severity. Sci Rep. 2019;9:10166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt FM, Schindler S, Adamidis M, Strauß M, Tränkner A, Trampel R, et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur Arch Psychiatry Clin Neurosci. 2017;267:107–15.

    Article  PubMed  Google Scholar 

  36. Schnellbächer GJ, Rajkumar R, Veselinović T, Ramkiran S, Hagen J, Shah NJ, et al. Structural alterations of the insula in depression patients - A 7-Tesla-MRI study. NeuroImage Clin. 2022;36:103249.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Casamitjana A, Mancini M, Robinson E, Peter L, Annunziata R, Althonayan J, et al. A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation. 2024:2024.02.05.579016.

  38. Edlow BL, Mareyam A, Horn A, Polimeni JR, Witzel T, Tisdall MD, et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data. 2019;6:244.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Seiger R, Hahn A, Hummer A, Kranz GS, Ganger S, Küblböck M, et al. Voxel-based morphometry at ultra-high fields. a comparison of 7T and 3T MRI data. NeuroImage. 2015;113:207–16.

    Article  PubMed  Google Scholar 

  40. Bapst B, Massire A, Mauconduit F, Gras V, Boulant N, Dufour J, et al. Pushing MP2RAGE boundaries: Ultimate time-efficient parameterization combined with exhaustive T1 synthetic contrasts. Magn Reson Med. 2024;91:1608–24.

    Article  CAS  PubMed  Google Scholar 

  41. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–37.

    Article  PubMed  Google Scholar 

  42. Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S, et al. What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychol Sci. 2020;31:792–806.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noble S, Scheinost D, Constable RT. A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. NeuroImage. 2019;203:116157.

    Article  PubMed  Google Scholar 

  44. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage. 2013;83:550–8.

    Article  PubMed  Google Scholar 

  45. Smagula SF, Karim HT, Ibrahim TS, Krafty RT, Stahl ST, Rodakowski J, et al. Resting-State Function Connectivity Associated With Being a “Morning-Type” Dementia Caregiver and Having Lower Depression Symptom Severity. J Gerontol B Psychol Sci Soc Sci. 2020;76:1071–6.

    Article  PubMed Central  Google Scholar 

  46. Smagula SF, Karim HT, Rangarajan A, Santos FP, Wood SC, Santini T, et al. Association of Hippocampal Substructure Resting-State Functional Connectivity with Memory Performance in Older Adults. Am J Geriatr Psychiatry J Am Assoc Geriatr Psychiatry. 2018;26:690–9.

    Article  Google Scholar 

  47. Cai Y, Hofstetter S, van der Zwaag W, Zuiderbaan W, Dumoulin SO. Individualized cognitive neuroscience needs 7T: Comparing numerosity maps at 3T and 7T MRI. NeuroImage. 2021;237:118184.

    Article  PubMed  Google Scholar 

  48. Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K, Rath J, et al. Clinical fMRI: Evidence for a 7T benefit over 3T. NeuroImage. 2011;57:1015–21.

    Article  CAS  PubMed  Google Scholar 

  49. Sladky R, Baldinger P, Kranz GS, Tröstl J, Höflich A, Lanzenberger R, et al. High-resolution functional MRI of the human amygdala at 7 T. Eur J Radio. 2013;82:728–33.

    Article  Google Scholar 

  50. Nemani A, Lowe MJ. Seed-based test–retest reliability of resting state functional magnetic resonance imaging at 3T and 7T. Med Phys. 2021;48:5756–64.

    Article  PubMed  Google Scholar 

  51. Sbaihat H, Rajkumar R, Ramkiran S, Assi AA-N, Felder J, Shah NJ, et al. Test–retest stability of spontaneous brain activity and functional connectivity in the core resting-state networks assessed with ultrahigh field 7-Tesla resting-state functional magnetic resonance imaging. Hum Brain Mapp. 2022;43:2026–40.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xing X-X, Gao X, Jiang C. Individual Variability of Human Cortical Spontaneous Activity by 3T/7T fMRI. Neuroscience. 2023;528:117–28.

    Article  CAS  PubMed  Google Scholar 

  53. Torrisi S, Nord CL, Balderston NL, Roiser JP, Grillon C, Ernst M. Resting state connectivity of the human habenula at ultra-high field. NeuroImage. 2017;147:872–9.

    Article  PubMed  Google Scholar 

  54. Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology. 2024. https://doi.org/10.1038/s41386-024-01941-z [Epub ahead of print].

  55. Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry. 2022;12:1–10.

    Article  Google Scholar 

  56. Ning L, Makris N, Camprodon JA, Rathi Y. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation. Brain Stimul. 2019;12:129–38.

    Article  PubMed  Google Scholar 

  57. Baecke S, Lützkendorf R, Mallow J, Luchtmann M, Tempelmann C, Stadler J, et al. A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation. Sci Rep. 2015;5:8413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao Z, Xiao X, Xie C, Wei L, Yang Y, Zhu C Personalized connectivity-based network targeting model of transcranial magnetic stimulation for treatment of psychiatric disorders: computational feasibility and reproducibility. Front Psychiatry. 2024;15:1341908.

  59. Bijsterbosch JD, Farahibozorg S-R, Glasser MF, Van Essen D, Snyder LH, Woolrich MW, et al. Evaluating functional brain organization in individuals and identifying contributions to network overlap. Imaging Neurosci. 2023;1:1–19.

    Article  Google Scholar 

  60. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision Functional Mapping of Individual Human Brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hua J, Blair NIS, Paez A, Choe A, Barber AD, Brandt A, et al. Altered functional connectivity between sub-regions in the thalamus and cortex in schizophrenia patients measured by resting state BOLD fMRI at 7T. Schizophr Res. 2019;206:370–7.

    Article  PubMed  Google Scholar 

  62. Dey A, Dempster K, MacKinley M, Jeon P, Das T, Khan A, et al. Conceptual disorganization and redistribution of resting-state cortical hubs in untreated first-episode psychosis: A 7T study. Npj Schizophr. 2021;7:1–9.

    Article  Google Scholar 

  63. Ebneabbasi A, Mahdipour M, Nejati V, Li M, Liebe T, Colic L, et al. Emotion processing and regulation in major depressive disorder: A 7T resting-state fMRI study. Hum Brain Mapp. 2021;42:797–810.

    Article  PubMed  Google Scholar 

  64. Wong JJ, Wong NML, Chang DHF, Qi D, Chen L, Lee TMC. Amygdala-pons connectivity is hyperactive and associated with symptom severity in depression. Commun Biol. 2022;5:574.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Morris LS, Kundu P, Costi S, Collins A, Schneider M, Verma G, et al. Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla. Transl Psychiatry. 2019;9:1–11.

    Article  Google Scholar 

  66. Goense JBM, Ku S-P, Merkle H, Tolias AS, Logothetis NK. fMRI of the temporal lobe of the awake monkey at 7 T. NeuroImage. 2008;39:1081–93.

    Article  PubMed  Google Scholar 

  67. Gizewski ER, de Greiff A, Maderwald S, Timmann D, Forsting M, Ladd ME. fMRI at 7 T: Whole-brain coverage and signal advantages even infratentorially? NeuroImage. 2007;37:761–8.

    Article  PubMed  Google Scholar 

  68. Rua C, Wastling SJ, Costagli M, Symms MR, Biagi L, Cosottini M, et al. Improving fMRI in signal drop-out regions at 7 T by using tailored radio-frequency pulses: application to the ventral occipito-temporal cortex. Magma N. Y N. 2018;31:257–67.

    Article  Google Scholar 

  69. Duong STM, Phung SL, Bouzerdoum A, Boyd Taylor HG, Puckett AM, Schira MM. Susceptibility artifact correction for sub-millimeter fMRI using inverse phase encoding registration and T1 weighted regularization. J Neurosci Methods. 2020;336:108625.

    Article  CAS  PubMed  Google Scholar 

  70. Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature. 2023;623:263–73.

    Article  CAS  PubMed  Google Scholar 

  71. Garey L. When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat. 2010;217:324–33.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    Article  CAS  PubMed  Google Scholar 

  73. Graybiel AM, Rauch SL. Toward a neurobiology of obsessive-compulsive disorder. Neuron. 2000;28:343–7.

    Article  CAS  PubMed  Google Scholar 

  74. Huber L, Finn ES, Chai Y, Goebel R, Stirnberg R, Stöcker T, et al. Layer-dependent functional connectivity methods. Prog Neurobiol. 2021;207:101835.

    Article  PubMed  Google Scholar 

  75. Hillman EMC. Coupling Mechanism and Significance of the BOLD Signal: A Status Report. Annu Rev Neurosci. 2014;37:161–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner R. How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes. NeuroImage. 2002;16:1062–7.

    Article  PubMed  Google Scholar 

  77. Budde J, Shajan G, Zaitsev M, Scheffler K, Pohmann R. Functional MRI in human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magn Reson Med. 2014;71:209–18.

    Article  PubMed  Google Scholar 

  78. Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med. 1994;31:9–21.

    Article  CAS  PubMed  Google Scholar 

  79. Han S, Eun S, Cho H, Uludaǧ K, Kim S-G. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. NeuroImage. 2021;241:118435.

    Article  CAS  PubMed  Google Scholar 

  80. Han S, Eun S, Cho H, Uludaǧ K, Kim S-G. Improved laminar specificity and sensitivity by combining SE and GE BOLD signals. NeuroImage. 2022;264:119675.

    Article  CAS  PubMed  Google Scholar 

  81. Huber L, Uludağ K, Möller HE. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. NeuroImage. 2019;197:742–60.

    Article  PubMed  Google Scholar 

  82. Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, et al. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med. 2014;72:137–48.

    Article  PubMed  Google Scholar 

  83. Lu H, Hua J, van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR Biomed. 2013;26:932–48.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kim S-G, Ogawa S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab. 2012;32:1188–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Demirayak P, Deshpande G, Visscher K. Laminar functional magnetic resonance imaging in vision research. Front Neurosci. 2022;16:910443.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Finn ES, Huber L, Bandettini PA. Higher and deeper: Bringing layer fMRI to association cortex. Prog Neurobiol. 2021;207:101930.

    Article  PubMed  Google Scholar 

  87. Corbitt PT, Ulloa A, Horwitz B. Simulating Laminar Neuroimaging Data for a Visual Delayed Match-to-Sample Task. NeuroImage. 2018;173:199–222.

    Article  PubMed  Google Scholar 

  88. Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev. 2021;128:467–78.

    Article  PubMed  Google Scholar 

  89. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. Layer-dependent activity in human prefrontal cortex during working memory. Nat Neurosci. 2019;22:1687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cerliani L, Bhandari R, De Angelis L, van der Zwaag W, Bazin P-L, Gazzola V, et al. Predictive coding during action observation – A depth-resolved intersubject functional correlation study at 7T. Cortex. 2022;148:121–38.

    Article  PubMed  Google Scholar 

  91. Chen L, Wang Q, Xu T. Working memory function in patients with major depression disorder: A narrative review. Clin Psychol Psychother. 2023;30:281–93.

    Article  PubMed  Google Scholar 

  92. Gold JM, Barch DM, Feuerstahler LM, Carter CS, MacDonald AW, Ragland JD, et al. Working Memory Impairment Across Psychotic disorders. Schizophr Bull. 2019;45:804–12.

    Article  PubMed  Google Scholar 

  93. Yun SD, Pais‐Roldán P, Palomero‐Gallagher N, Shah NJ. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Hum Brain Mapp. 2022;43:3386–403.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Deshpande G, Wang Y, Robinson J. Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain. Brain Inf. 2022;9:2.

    Article  Google Scholar 

  95. Pais-Roldán P, Yun SD, Palomero-Gallagher N, Shah NJ Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front Neurosci. 2023;17:

  96. Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni JR, Ahveninen J. Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI. BioRxiv Prepr Serv Biol. 2023:2023.12.23.573208. https://doi.org/10.1101/2023.12.23.573208.

  97. Koster R, Chadwick MJ, Chen Y, Berron D, Banino A, Düzel E, et al. Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes. Neuron. 2018;99:1342–54.e6.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang K, Chen L, Li Y, Paez AG, Miao X, Cao D, et al. Differential Laminar Activation Dissociates Encoding and Retrieval in the Human Medial and Lateral Entorhinal Cortex. J Neurosci. 2023;43:2874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fraunfelter L, Gerdes ABM, Alpers GW. Fear one, fear them all: A systematic review and meta-analysis of fear generalization in pathological anxiety. Neurosci Biobehav Rev. 2022;139:104707.

    Article  CAS  PubMed  Google Scholar 

  100. Huggins AA, Weis CN, Parisi EA, Bennett KP, Miskovic V, Larson CL. Neural substrates of human fear generalization: A 7T-fMRI investigation. NeuroImage. 2021;239:118308.

    Article  PubMed  Google Scholar 

  101. Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HBM, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108:13281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hoftman GD, Datta D, Lewis DA. Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biol Psychiatry. 2017;81:862–73.

    Article  PubMed  Google Scholar 

  103. Jia K, Zamboni E, Rua C, Goncalves NR, Kemper V, Ng AKT, et al. A protocol for ultra-high field laminar fMRI in the human brain. STAR Protoc. 2021;2:100415.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Huber L, Renzo, Poser BA, Bandettini PA, Arora K, Wagstyl K, et al. LayNii: A software suite for layer-fMRI. NeuroImage. 2021;237:118091.

    Article  PubMed  Google Scholar 

  105. Feinberg DA, Beckett AJS, Vu AT, Stockmann J, Huber L, Ma S, et al. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods. 2023;20:2048–57.

  106. Godlewska BR, Clare S, Cowen PJ, Emir UE Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry. Front Psychiatry. 2017;8:123.

  107. Terpstra M, Cheong I, Lyu T, Deelchand DK, Emir UE, Bednařík P, et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn Reson Med. 2016;76:1083–91.

    Article  PubMed  Google Scholar 

  108. Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med. 2001;46:451–6.

    Article  PubMed  Google Scholar 

  109. Peek AL, Rebbeck TJ, Leaver AM, Foster SL, Refshauge KM, Puts NA, et al. A comprehensive guide to MEGA-PRESS for GABA measurement. Anal Biochem. 2023;669:115113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maddock RJ, Caton MD, Ragland JD. Estimating Glutamate and Glx from GABA-Optimized MEGA-PRESS: Off-Resonance but not Difference Spectra Values Correspond to PRESS Values. Psychiatry Res Neuroimaging. 2018;279:22–30.

    Article  PubMed  PubMed Central  Google Scholar 

  111. van Veenendaal TM, Backes WH, van Bussel FCG, Edden RAE, Puts NAJ, Aldenkamp AP, et al. Glutamate quantification by PRESS or MEGA-PRESS: Validation, repeatability, and concordance. Magn Reson Imaging. 2018;48:107–14.

    Article  PubMed  Google Scholar 

  112. Rideaux R, Ehrhardt SE, Wards Y, Filmer HL, Jin J, Deelchand DK, et al. On the relationship between GABA+ and glutamate across the brain. NeuroImage. 2022;257:119273.

    Article  CAS  PubMed  Google Scholar 

  113. Perica MI, Calabro FJ, Larsen B, Foran W, Yushmanov VE, Hetherington H, et al. Development of frontal GABA and glutamate supports excitation/inhibition balance from adolescence into adulthood. Prog Neurobiol. 2022;219:102370.

    Article  CAS  PubMed  Google Scholar 

  114. Kanagasabai K, Palaniyappan L, Théberge J. Precision of metabolite-selective MRS measurements of glutamate, GABA and glutathione: A review of human brain studies. NMR Biomed. 2024;37:e5071.

    Article  CAS  PubMed  Google Scholar 

  115. Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr Res. 2020;226:61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–95.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Godlewska BR, Minichino A, Emir U, Angelescu I, Lennox B, Micunovic M, et al. Brain glutamate concentration in men with early psychosis: a magnetic resonance spectroscopy case–control study at 7 T. Transl Psychiatry. 2021;11:1–7.

    Article  Google Scholar 

  118. Jeon P, Limongi R, Ford SD, Mackinley M, Dempster K, Théberge J, et al. Progressive Changes in Glutamate Concentration in Early Stages of Schizophrenia: A Longitudinal 7-Tesla MRS Study. Schizophr Bull Open. 2021;2:sgaa072.

    Article  PubMed  Google Scholar 

  119. Overbeek G, Gawne TJ, Reid MA, Kraguljac NV, Lahti AC. A multimodal neuroimaging study investigating resting-state connectivity, glutamate and GABA at 7 T in first-episode psychosis. J Psychiatry Neurosci. 2021;46:E702–10.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr Bull. 2019;45:180–9.

    Article  PubMed  Google Scholar 

  121. Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, et al. Assessing Brain Metabolism With 7-T Proton Magnetic Resonance Spectroscopy in Patients With First-Episode Psychosis. JAMA Psychiatry. 2019;76:314–23.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, et al. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry. 2023;28:2018–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mayeli A, Sonnenschein SF, Yushmanov VE, Wilson JD, Blazer A, Foran W, et al. Dorsolateral Prefrontal Cortex Glutamate/Gamma-Aminobutyric Acid (GABA) Alterations in Clinical High Risk and First-Episode Schizophrenia: A Preliminary 7-T Magnetic Resonance Spectroscopy Imaging Study. Int J Mol Sci. 2022;23:15846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wijtenburg SA, Wang M, Korenic SA, Chen S, Barker PB, Rowland LM Metabolite Alterations in Adults With Schizophrenia, First Degree Relatives, and Healthy Controls: A Multi-Region 7T MRS Study. Front Psychiatry. 2021;12:656459.

  125. Sonnenschein SF, Mayeli A, Yushmanov VE, Blazer A, Calabro FJ, Perica M, et al. A longitudinal investigation of GABA, glutamate, and glutamine across the insula during antipsychotic treatment of first-episode schizophrenia. Schizophr Res. 2022;248:98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thakkar KN, Rösler L, Wijnen JP, Boer VO, Klomp DWJ, Cahn W, et al. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings. Biol Psychiatry. 2017;81:525–35.

    Article  CAS  PubMed  Google Scholar 

  127. Marsman A, Mandl RCW, Klomp DWJ, Bohlken MM, Boer VO, Andreychenko A, et al. GABA and glutamate in schizophrenia: A 7 T 1H-MRS study. NeuroImage Clin. 2014;6:398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Quiñones GM, Mayeli A, Yushmanov VE, Hetherington HP, Ferrarelli F. Reduced GABA/glutamate in the thalamus of individuals at clinical high risk for psychosis. Neuropsychopharmacology. 2021;46:1133–9.

    Article  PubMed  Google Scholar 

  129. Overbeek G, Gawne TJ, Reid MA, Salibi N, Kraguljac NV, White DM, et al. Relationship Between Cortical Excitation and Inhibition and Task-Induced Activation and Deactivation: A Combined Magnetic Resonance Spectroscopy and Functional Magnetic Resonance Imaging Study at 7T in First-Episode Psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:121–30.

    PubMed  Google Scholar 

  130. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12:3721–8.

    Article  CAS  PubMed  Google Scholar 

  131. Dempster K, Jeon P, MacKinley M, Williamson P, Théberge J, Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry. 2020;25:1640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pan Y, Dempster K, Jeon P, Théberge J, Khan AR, Palaniyappan L. Acute conceptual disorganization in untreated first-episode psychosis: a combined magnetic resonance spectroscopy and diffusion imaging study of the cingulum. J Psychiatry Neurosci JPN. 2021;46:E337–46.

    Article  PubMed  Google Scholar 

  133. Yang K, Longo L, Narita Z, Cascella N, Nucifora FC, Coughlin JM, et al. A multimodal study of a first episode psychosis cohort: potential markers of antipsychotic treatment resistance. Mol Psychiatry. 2022;27:1184–91.

    Article  CAS  PubMed  Google Scholar 

  134. Limongi R, Jeon P, Théberge J, Palaniyappan L. Counteracting Effects of Glutathione on the Glutamate-Driven Excitation/Inhibition Imbalance in First-Episode Schizophrenia: A 7T MRS and Dynamic Causal Modeling Study. Antioxidants. 2021;10:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Smith GS, Oeltzschner G, Gould NF, Leoutsakos J-MS, Nassery N, Joo JH, et al. Neurotransmitters and Neurometabolites in Late-Life Depression: A Preliminary Magnetic Resonance Spectroscopy Study at 7T. J Affect Disord. 2021;279:417–25.

    Article  CAS  PubMed  Google Scholar 

  136. Taylor R, Osuch EA, Schaefer B, Rajakumar N, Neufeld RWJ, Théberge J, et al. Neurometabolic abnormalities in schizophrenia and depression observed with magnetic resonance spectroscopy at 7 T. BJPsych Open. 2017;3:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Song Y, Cho J-H, Kim H, Eum Y-J, Cheong E-N, Choi S, et al. Association Between Taurine Level in the Hippocampus and Major Depressive Disorder in Young Women: A Proton Magnetic Resonance Spectroscopy Study at 7T. Biol Psychiatry. 2024;95:465–72.

    Article  CAS  PubMed  Google Scholar 

  138. Li Y, Jakary A, Gillung E, Eisendrath S, Nelson SJ, Mukherjee P, et al. Evaluating metabolites in patients with major depressive disorder who received mindfulness-based cognitive therapy and healthy controls using short echo MRSI at 7 Tesla. Magn Reson Mater Phys Biol Med. 2016;29:523–33.

    Article  CAS  Google Scholar 

  139. Biria M, Banca P, Keser E, Healy MP, Sawiak SJ, Frota Lisbôa Pereira de Souza AM, et al. Excessive Checking in Obsessive-Compulsive Disorder: Neurochemical Correlates Revealed by 7T Magnetic Resonance Spectroscopy. Biol Psychiatry Glob Open Sci. 2024;4:363–73.

    Article  PubMed  Google Scholar 

  140. Biria M, Banca P, Healy MP, Keser E, Sawiak SJ, Rodgers CT, et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun. 2023;14:3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Juchem C, Cudalbu C, de Graaf RA, Gruetter R, Henning A, Hetherington HP, et al. B0 shimming for in vivo magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed. 2021;34:e4350.

    Article  PubMed  Google Scholar 

  142. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramér–Rao bounds: an evaluation tool for quantitation. NMR Biomed. 2001;14:278–83.

    Article  CAS  PubMed  Google Scholar 

  143. Cavassila S, Deval S, Huegen C, van Ormondt Dnull, Graveron-Demilly D. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J Magn Reson San Diego Calif 1997. 2000;143:311–20.

    CAS  Google Scholar 

  144. Pan JW, Lo K-M, Hetherington HP. Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla. Magn Reson Med. 2012;68:1007–17.

    Article  PubMed  Google Scholar 

  145. Juchem C, Nixon TW, McIntyre S, Boer VO, Rothman DL, de Graaf RA. Dynamic multi-coil shimming of the human brain at 7 T. J Magn Reson San Diego Calif 1997. 2011;212:280–8.

    CAS  Google Scholar 

  146. Han H, Song AW, Truong T-K. Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med. 2013;70:241–7.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Adriany G, Van de Moortele P-F, Wiesinger F, Moeller S, Strupp JP, Andersen P, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med. 2005;53:434–45.

    Article  PubMed  Google Scholar 

  148. Ibrahim TS. A numerical analysis of radio-frequency power requirements in magnetic resonance imaging experiment. IEEE Trans Micro Theory Tech. 2004;52:1999–2003.

    Article  Google Scholar 

  149. Ibrahim TS, Tang L. Insight into RF power requirements and B1 field homogeneity for human MRI via rigorous FDTD approach. J Magn Reson Imaging JMRI. 2007;25:1235–47.

    Article  PubMed  Google Scholar 

  150. Ibrahim TS, Hue Y-K, Tang L. Understanding and manipulating the RF fields at high field MRI. NMR Biomed. 2009;22:927–36.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ibrahim TS, Mitchell C, Abraham R, Schmalbrock P. In-depth study of the electromagnetics of ultrahigh-field MRI. NMR Biomed. 2007;20:58–68.

    Article  PubMed  Google Scholar 

  152. Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, et al. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med. 2005;54:1503–18.

    Article  PubMed  Google Scholar 

  153. Ibrahim TS. Ultrahigh-field MRI whole-slice and localized RF field excitations using the same RF transmit array. IEEE Trans Med Imaging. 2006;25:1341–7.

    Article  PubMed  Google Scholar 

  154. Ibrahim TS, Abduljalil AM, Baertlein BA, Lee R, Robitaill PM. Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI applications. Phys Med Biol. 2001;46:2545–55.

    Article  CAS  PubMed  Google Scholar 

  155. Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PL. Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations. Magn Reson Imaging. 2000;18:733–42.

    Article  CAS  PubMed  Google Scholar 

  156. Li X, Gong H, Pan JW, Hetherington HP, Rispoli JV. Modelling and B1 Shim Analysis of 16-Element Transceiver Array at 7 T. Int Conf Electromagn Adv Appl Proc ICEAA. Int Conf Electromagn Adv Appl. 2019;2019:1291–5.

    PubMed  PubMed Central  Google Scholar 

  157. Gazzaniga MS The cognitive neurosciences. 4th ed. Cambridge, Mass.: MIT Press; 2009.

  158. Kandel ER Principles of neural science. 5th ed. New York: McGraw-Hill; 2013.

  159. Pettegrew JW, Klunk WE, Panchalingam K, McClure RJ, Stanley JA. Molecular insights into neurodevelopmental and neurodegenerative diseases. Brain Res Bull. 2000;53:455–69.

    Article  CAS  PubMed  Google Scholar 

  160. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenia. Arch Gen Psychiatry. 1991;48:563–8.

    Article  CAS  PubMed  Google Scholar 

  161. Stanley JA, Kipp H, Greisenegger E, MacMaster FP, Panchalingam K, Keshavan MS, et al. Evidence of developmental alterations in cortical and subcortical regions of children with attention-deficit/hyperactivity disorder: a multivoxel in vivo phosphorus 31 spectroscopy study. Arch Gen Psychiatry. 2008;65:1419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Shi F, Yap PT, Gao W, Lin W, Gilmore JH, Shen D. Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage. 2012;62:1622–33.

    Article  PubMed  Google Scholar 

  163. Ahn SJ, Cornea E, Murphy V, Styner M, Jarskog LF, Gilmore JH. White matter development in infants at risk for schizophrenia. Schizophr Res. 2019;210:107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lockwood-Estrin G, Thom M, Focke NK, Symms MR, Martinian L, Sisodiya SM, et al. Correlating 3T MRI and histopathology in patients undergoing epilepsy surgery. J Neurosci Methods. 2012;205:182–9.

    Article  PubMed  Google Scholar 

  165. Weinberger DR, Radulescu E. Finding the Elusive Psychiatric ‘Lesion’ With 21st-Century Neuroanatomy: A Note of Caution. Am J Psychiatry. 2016;173:27–33.

    Article  PubMed  Google Scholar 

  166. Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten M-C, et al. Synthesis and Preclinical Evaluation of 11C-UCB-J as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med Publ Soc Nucl Med. 2016;57:777–84.

    Article  CAS  Google Scholar 

  167. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra96.

    Article  PubMed  Google Scholar 

  168. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127:831–46.

    Article  CAS  PubMed  Google Scholar 

  169. Geddes JW, Panchalingam K, Keller JN, Pettegrew JW. Elevated phosphocholine and phosphatidylcholine following rat entorhinal cortex lesions. Neurobiol Aging. 1997;18:305–8.

    Article  CAS  PubMed  Google Scholar 

  170. Marcucci H, Paoletti L, Jackowski S, Banchio C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem. 2010;285:25382–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. O’Brien JS, Sampson EL. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965;6:537–44.

    Article  PubMed  Google Scholar 

  172. Burri R, Lazeyras F, Aue WP, Straehl P, Bigler P, Althaus U, et al. Correlation between 31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain. Dev Neurosci. 1988;10:213–21.

    Article  CAS  PubMed  Google Scholar 

  173. Pettegrew JW, Panchalingam K, Withers G, McKeag D, Strychor S. Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 Rat. J Neuropathol Exp Neurol. 1990;49:237–49.

    Article  CAS  PubMed  Google Scholar 

  174. Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, et al. 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol. 1987;46:419–30.

    Article  CAS  PubMed  Google Scholar 

  175. Stanley JA, Khatib D, Dick RM, McGarragle OA, MacMaster FP, Robin AL, et al. Evidence of Neuronal Growth Spurts During Development in Healthy Children and Adolescents Using A Multi-voxel In Vivo 31P Spectroscopy at 4 TeslaStockholm; 2010.

  176. Haszto CS, Stanley JA, Iyengar S, Prasad KM. Regionally distinct alterations in membrane phospholipid metabolism in schizophrenia: A meta-analysis of phosphorus magnetic resonance spectroscopy. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:264–80.

    PubMed  Google Scholar 

  177. Prasad KM, Chowdari KV, D’Aiuto LA, Iyengar S, Stanley JA, Nimgaonkar VL. Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients–a pilot study. Transl Psychiatry. 2018;8:134.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Prasad KM, Burgess AM, Keshavan MS, Nimgaonkar VL, Stanley JA. Neuropil pruning in Early-Course Schizophrenia: Immunological, Clinical, and Neurocognitive Correlates. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:528–38.

    PubMed  PubMed Central  Google Scholar 

  179. Zhu XH, Lu M, Chen W. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear (2)H, (17)O and (31)P MRS at ultra-high field. J Magn Reson. 2018;292:155–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Deicken RF, Calabrese G, Merrin EL, Vinogradov S, Fein G, Weiner MW. Asymmetry of temporal lobe phosphorous metabolism in schizophrenia: a 31phosphorous magnetic resonance spectroscopic imaging study. Biol Psychiatry. 1995;38:279–86.

    Article  CAS  PubMed  Google Scholar 

  181. Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, et al. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med. 1995;25:557–66.

    Article  CAS  PubMed  Google Scholar 

  182. Volz HP, Rossger G, Riehemann S, Hubner G, Maurer I, Wenda B, et al. Increase of phosphodiesters during neuroleptic treatment of schizophrenics: a longitudinal 31P-magnetic resonance spectroscopic study. Biol Psychiatry. 1999;45:1221–5.

    Article  CAS  PubMed  Google Scholar 

  183. Jayakumar PN, Gangadhar BN, Venkatasubramanian G, Desai S, Velayudhan L, Subbakrishna D, et al. High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res. 2010;181:237–40.

    Article  CAS  PubMed  Google Scholar 

  184. Cavelier L, Jazin EE, Eriksson I, Prince J, Båve U, Oreland L, et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics. 1995;29:217–24.

    Article  CAS  PubMed  Google Scholar 

  185. Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci. 2011;29:311–24.

    Article  CAS  PubMed  Google Scholar 

  186. Maurer I, Zierz S, Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res. 2001;48:125–36.

    Article  CAS  PubMed  Google Scholar 

  187. Waxman SG. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve. 1980;3:141–50.

    Article  CAS  PubMed  Google Scholar 

  188. Pajevic S, Basser PJ, Fields RD. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience. 2014;276:135–47.

    Article  CAS  PubMed  Google Scholar 

  189. Chorghay Z, Káradóttir RT, Ruthazer ES. White Matter Plasticity Keeps the Brain in Tune: Axons Conduct While Glia Wrap. Front Cell Neurosci. 2018;12:428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tomassy GS, Berger DR, Chen H-H, Kasthuri N, Hayworth KJ, Vercelli A, et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science. 2014;344:319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Micheva KD, Wolman D, Mensh BD, Pax E, Buchanan J, Smith SJ, et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife. 2016;5:e15784.

  192. Zonouzi M, Berger D, Jokhi V, Kedaigle A, Lichtman J, Arlotta P. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 2019;27:2799–808.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stedehouder J, Couey JJ, Brizee D, Hosseini B, Slotman JA, Dirven CMF, et al. Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans. Cereb Cortex. 2017;27:5001–13.

    Article  CAS  PubMed  Google Scholar 

  194. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344:1252304.

    Article  PubMed  PubMed Central  Google Scholar 

  195. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor. Science. 2005;309:2222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. de Faria O, Pivonkova H, Varga B, Timmler S, Evans KA, Káradóttir RT. Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci. 2021;24:1508–21.

    Article  PubMed  Google Scholar 

  197. Kalish BT, Barkat TR, Diel EE, Zhang EJ, Greenberg ME, Hensch TK. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proc Natl Acad Sci. 2020;117:11744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, et al. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry. 2022;12:264–85.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res. 2007;151:179–88.

    Article  CAS  PubMed  Google Scholar 

  200. Lake EMR, Steffler EA, Rowley CD, Sehmbi M, Minuzzi L, Frey BN, et al. Altered intracortical myelin staining in the dorsolateral prefrontal cortex in severe mental illness. Eur Arch Psychiatry Clin Neurosci. 2017;267:369–76.

    Article  PubMed  Google Scholar 

  201. Grydeland H, Vértes PE, Váša F, Romero-Garcia R, Whitaker K, Alexander-Bloch AF, et al. Waves of Maturation and Senescence in Micro-structural MRI Markers of Human Cortical Myelination over the Lifespan. Cereb Cortex. 2019;29:1369–81.

    Article  PubMed  Google Scholar 

  202. Yeatman JD, Wandell BA, Mezer A. Lifespan maturation and degeneration of human brain white matter. Nat Commun. 2014;5:4932.

    Article  CAS  PubMed  Google Scholar 

  203. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci. 2012;109:16480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Caspi A, Houts RM, Ambler A, Danese A, Elliott ML, Hariri A, et al. Longitudinal Assessment of Mental Health Disorders and Comorbidities Across 4 Decades Among Participants in the Dunedin Birth Cohort Study. JAMA Netw Open. 2020;3:e203221.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27:281–95.

    Article  CAS  PubMed  Google Scholar 

  206. Sydnor VJ, Satterthwaite TD Neuroimaging of plasticity mechanisms in the human brain: from critical periods to psychiatric conditions. Neuropsychopharmacology. 2023;48:219–20.

  207. Norbom LB, Doan NT, Alnæs D, Kaufmann T, Moberget T, Rokicki J, et al. Probing Brain Developmental Patterns of Myelination and Associations With Psychopathology in Youths Using Gray/White Matter Contrast. Biol Psychiatry. 2019;85:389–98.

    Article  PubMed  Google Scholar 

  208. Vanes LD, Moutoussis M, Ziegler G, Goodyer IM, Fonagy P, Jones PB, et al. White matter tract myelin maturation and its association with general psychopathology in adolescence and early adulthood. Hum Brain Mapp. 2020;41:827–39.

    Article  PubMed  Google Scholar 

  209. van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar P-J, et al. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. NeuroImage. 2021;226:117561.

    Article  PubMed  Google Scholar 

  210. Paquola C, Hong S-J. The Potential of Myelin-Sensitive Imaging: Redefining Spatiotemporal Patterns of Myeloarchitecture. Biol Psychiatry. 2023;93:442–54.

    Article  CAS  PubMed  Google Scholar 

  211. Piredda GF, Hilbert T, Thiran J-P, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med. 2021;85:627–52.

    Article  CAS  PubMed  Google Scholar 

  212. Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage. 2014;93:176–88.

    Article  CAS  PubMed  Google Scholar 

  213. MacKay AL, Laule C. Magnetic Resonance of Myelin Water: An in vivo Marker for Myelin. Brain Plast. 2016;2:71–91.

    Article  PubMed  PubMed Central  Google Scholar 

  214. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31:673–7.

    Article  CAS  PubMed  Google Scholar 

  215. Glasser MF, Van Essen DC. Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI. J Neurosci. 2011;31:11597–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, et al. Empirical transmit field bias correction of T1w/T2w myelin maps. NeuroImage. 2022;258:119360.

    Article  PubMed  Google Scholar 

  217. Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med. 2008;60:1396–407.

    Article  PubMed  Google Scholar 

  218. Dortch RD, Moore J, Li K, Jankiewicz M, Gochberg DF, Hirtle JA, et al. Quantitative magnetization transfer imaging of human brain at 7 T. NeuroImage. 2013;64:640–9.

    Article  PubMed  Google Scholar 

  219. Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage. 2021;230:117744.

    Article  PubMed  Google Scholar 

  220. Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife. 2020;9:e61523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Paquola C, Bethlehem RA, Seidlitz J, Wagstyl K, Romero-Garcia R, Whitaker KJ, et al. Shifts in myeloarchitecture characterise adolescent development of cortical gradients. eLife. 2019;8:e50482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. NeuroImage. 2019;197:716–41.

    Article  PubMed  Google Scholar 

  223. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci. 2018;21:1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nieuwenhuys R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct. 2013;218:303–52.

    Article  PubMed  Google Scholar 

  225. Yakovlev P, Lecours A The Myelogenetic Cycles of Regional Maturation of the Brain. Reg. Dev. Brain Early Life, London, UK: Oxford: Blackwell; 1967. p. 3–70.

  226. Tardif CL, Schäfer A, Waehnert M, Dinse J, Turner R, Bazin P-L. Multi-contrast multi-scale surface registration for improved alignment of cortical areas. NeuroImage. 2015;111:107–22.

    Article  PubMed  Google Scholar 

  227. Dinse J, Härtwich N, Waehnert MD, Tardif CL, Schäfer A, Geyer S, et al. A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI. NeuroImage. 2015;114:71–87.

    Article  CAS  PubMed  Google Scholar 

  228. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49:1271–81.

    Article  PubMed  Google Scholar 

  229. Wiggermann V, MacKay AL, Rauscher A, Helms G. In vivo investigation of the multi-exponential T2 decay in human white matter at 7 T: Implications for myelin water imaging at UHF. NMR Biomed. 2021;34:e4429.

    Article  CAS  PubMed  Google Scholar 

  230. Haast RAM, Ivanov D, Formisano E, Uludaǧ K Reproducibility and Reliability of Quantitative and Weighted T1 and T2 Mapping for Myelin-Based Cortical Parcellation at 7 Tesla. Front Neuroanat. 2016;10:112.

  231. Olsson H, Andersen M, Wirestam R, Helms G. Mapping magnetization transfer saturation (MTsat) in human brain at 7T: Protocol optimization under specific absorption rate constraints. Magn Reson Med. 2021;86:2562–76.

    Article  CAS  PubMed  Google Scholar 

  232. Wang D, Ehses P, Stöcker T, Stirnberg R. Reproducibility of rapid multi-parameter mapping at 3T and 7T with highly segmented and accelerated 3D-EPI. Magn Reson Med. 2022;88:2217–32.

    Article  CAS  PubMed  Google Scholar 

  233. Spincemaille P, Anderson J, Wu G, Yang B, Fung M, Li K, et al. Quantitative Susceptibility Mapping: MRI at 7T versus 3T. J Neuroimaging J Am Soc Neuroimaging. 2020;30:65–75.

    Article  Google Scholar 

  234. Lancione M, Donatelli G, Cecchi P, Cosottini M, Tosetti M, Costagli M. Echo-time dependency of quantitative susceptibility mapping reproducibility at different magnetic field strengths. NeuroImage. 2019;197:557–64.

    Article  PubMed  Google Scholar 

  235. Rua C, Clarke WT, Driver ID, Mougin O, Morgan AT, Clare S, et al. Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study. NeuroImage. 2020;223:117358.

    Article  PubMed  Google Scholar 

  236. Wu X, Auerbach EJ, Vu AT, Moeller S, Lenglet C, Schmitter S, et al. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med. 2018;80:1857–70.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Van Dyken PC, MacKinley M, Khan AR, Palaniyappan L. Cortical Network Disruption Is Minimal in Early Stages of Psychosis. Schizophr Bull Open. 2024;5:sgae010.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Kai J, Mackinley M, Khan AR, Palaniyappan L. Aberrant frontal lobe ‘U’-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study. NeuroImage Clin. 2023;38:103367.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Ziegler G, Hauser TU, Moutoussis M, Bullmore EdwardT, Goodyer IM, Fonagy P, et al. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat Neurosci. 2019;22:992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hettwer MD, Dorfschmidt L, Puhlmann L, Jacob LM, Paquola C, Bethlehem R, et al. Longitudinal trajectories of resilient psychosocial functioning link to ongoing cortical myelination and functional reorganization during adolescence. 2024. https://doi.org/10.31234/osf.io/2dv68.

  241. Sacchet MD, Gotlib IH. Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Sci Rep. 2017;7:2200.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Shim J-M, Cho S-E, Kang C-K, Kang S-G. Low myelin-related values in the fornix and thalamus of 7 Tesla MRI of major depressive disorder patients. Front Mol Neurosci. 2023;16:1214738.

  243. Palaniyappan L, Al-Radaideh A, Mougin O, Das T, Gowland P, Liddle PF. Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol Med. 2019;49:1890–6.

    Article  PubMed  Google Scholar 

  244. Palaniyappan L, Al-Radaideh A, Mougin O, Gowland P, Liddle PF. Combined White Matter Imaging Suggests Myelination Defects in Visual Processing Regions in Schizophrenia. Neuropsychopharmacology. 2013;38:1808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Park MTM, Jeon P, French L, Dempster K, Chakravarty MM, MacKinley M, et al. Microstructural imaging and transcriptomics of the basal forebrain in first-episode psychosis. Transl Psychiatry. 2022;12:358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17:83–93.

    Article  CAS  PubMed  Google Scholar 

  247. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ortega R, Cloetens P, Devès G, Carmona A, Bohic S. Iron Storage within Dopamine Neurovesicles Revealed by Chemical Nano-Imaging. PLOS ONE. 2007;2:e925.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Frantom PA, Seravalli J, Ragsdale SW, Fitzpatrick PF. Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase:  Kinetics and Specificity. Biochemistry. 2006;45:2372–9.

    Article  CAS  PubMed  Google Scholar 

  250. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14:551–64.

    Article  CAS  PubMed  Google Scholar 

  251. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78.

    Article  PubMed  Google Scholar 

  252. Ramsey AJ, Hillas PJ, Fitzpatrick PF. Characterization of the Active Site Iron in Tyrosine Hydroxylase REDOX STATES OF THE IRON. J Biol Chem. 1996;271:24395–400.

    Article  CAS  PubMed  Google Scholar 

  253. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119.

    Article  CAS  PubMed  Google Scholar 

  254. Unger EL, Wiesinger JA, Hao L, Beard JL. Dopamine D2 Receptor Expression Is Altered by Changes in Cellular Iron Levels in PC12 Cells and Rat Brain Tissue. J Nutr. 2008;138:2487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron. AJR. Am J Roentgenol. 1986;147:103–10.

    Article  CAS  Google Scholar 

  256. Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. NeuroImage. 2018;179:117–33.

    Article  CAS  PubMed  Google Scholar 

  257. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, et al. Quantitative MR Imaging of Brain Iron: A Postmortem Validation Study. Radiology. 2010;257:455–62.

    Article  PubMed  Google Scholar 

  258. Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun. 2020;11:846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging. Magn Reson Med. 2010;63:194–206.

    Article  PubMed  Google Scholar 

  260. Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25.

    Article  PubMed  Google Scholar 

  261. Reichenbach JR, Schweser F, Serres B, Deistung A. Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol. 2015;25:225–30.

    Article  PubMed  Google Scholar 

  262. Duyn JH, van Gelderen P, Li T-Q, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA. 2007;104:11796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yao B, Li T-Q, Gelderen P, van, Shmueli K, de Zwart JA, Duyn JH. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. NeuroImage 2009;44:1259–66.

    Article  PubMed  Google Scholar 

  264. Betts MJ, Acosta-Cabronero J, Cardenas-Blanco A, Nestor PJ, Düzel E. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7 T. NeuroImage. 2016;138:43–63.

    Article  PubMed  Google Scholar 

  265. Buijs M, Doan NT, van Rooden S, Versluis MJ, van Lew B, Milles J, et al. In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-Tesla T2*-weighted phase imaging. Neurobiol Aging. 2017;53:20–26.

    Article  CAS  PubMed  Google Scholar 

  266. Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc. 2018;109:1–50.

    Article  CAS  PubMed  Google Scholar 

  267. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related Iron Deposition in the Basal Ganglia: Quantitative Analysis in Healthy Subjects1. Radiology. 2009;252:165–72.

    Article  PubMed  Google Scholar 

  268. Hect JL, Daugherty AM, Hermez KM, Thomason ME. Developmental variation in regional brain iron and its relation to cognitive functions in childhood. Dev Cogn Neurosci. 2018;34:18–26.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Larsen B, Luna B. In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev Cogn Neurosci. 2015;12:74–85.

    Article  PubMed  Google Scholar 

  270. Peterson ET, Kwon D, Luna B, Larsen B, Prouty D, De Bellis MD, et al. Distribution of brain iron accrual in adolescence: Evidence from cross-sectional and longitudinal analysis. Hum Brain Mapp. 2019;40:1480–95.

    Article  PubMed  Google Scholar 

  271. Adisetiyo V, Gray KM, Jensen JH, Helpern JA. Brain iron levels in attention-deficit/hyperactivity disorder normalize as a function of psychostimulant treatment duration. NeuroImage Clin. 2019;24:101993.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Ravanfar P, Syeda WT, Jayaram M, Rushmore RJ, Moffat B, Lin AP, et al. In Vivo 7-Tesla MRI Investigation of Brain Iron and Its Metabolic Correlates in Chronic Schizophrenia. Schizophr Heidelb Ger. 2022;8:86.

    Article  Google Scholar 

  273. Sonnenschein SF, Parr AC, Larsen B, Calabro FJ, Foran W, Eack SM, et al. Subcortical brain iron deposition in individuals with schizophrenia. J Psychiatr Res. 2022;151:272–8.

    Article  PubMed  Google Scholar 

  274. Sui YV, McKenna F, Bertisch H, Storey P, Anthopolos R, Goff DC, et al. Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry. 2022;27:5144–53.

    Article  CAS  PubMed  Google Scholar 

  275. Xu M, Guo Y, Cheng J, Xue K, Yang M, Song X, et al. Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping. NeuroImage Clin. 2021;31:102736.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Ersche KD, Acosta-Cabronero J, Jones PS, Ziauddeen H, van Swelm RPL, Laarakkers CMM, et al. Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl Psychiatry. 2017;7:e1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Tan H, Hubertus S, Thomas S, Lee AM, Gerhardt S, Gerchen MF, et al. Association between iron accumulation in the dorsal striatum and compulsive drinking in alcohol use disorder. Psychopharmacol (Berl). 2023;240:249–57.

    Article  CAS  Google Scholar 

  278. Price RB, Tervo-Clemmens BC, Panny B, Degutis M, Griffo A, Woody M. Biobehavioral correlates of an fMRI index of striatal tissue iron in depressed patients. Transl Psychiatry. 2021;11:1–8.

    Article  Google Scholar 

  279. Barbosa JHO, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, et al. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging. 2015;33:559–65.

    Article  CAS  PubMed  Google Scholar 

  280. Esterhammer R, Seppi K, Reiter E, Pinter B, Mueller C, Kremser C, et al. Potential of Diffusion Tensor Imaging and Relaxometry for the Detection of Specific Pathological Alterations in Parkinson’s Disease (PD). PLOS ONE. 2015;10:e0145493.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Guan X, Xuan M, Gu Q, Xu X, Huang P, Wang N, et al. Influence of regional iron on the motor impairments of Parkinson’s disease: A quantitative susceptibility mapping study. J Magn Reson Imaging. 2017;45:1335–42.

    Article  CAS  PubMed  Google Scholar 

  282. Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F. Is R2* a New MRI Biomarker for the Progression of Parkinson’s Disease? A Longitudinal Follow-Up. PLOS ONE. 2013;8:e57904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Wieler M, Gee M, Martin WRW. Longitudinal midbrain changes in early Parkinson’s disease: Iron content estimated from R2*/MRI. Parkinsonism Relat Disord. 2015;21:179–83.

    Article  PubMed  Google Scholar 

  284. Jakary A, Lupo JM, Mackin S, Yin A, Murray D, Yang T, et al. Evaluation of major depressive disorder using 7 Tesla phase sensitive neuroimaging before and after mindfulness-based cognitive therapy. J Affect Disord. 2023;335:383–91.

    Article  PubMed  Google Scholar 

  285. Yao J, Morrison MA, Jakary A, Avadiappan S, Chen Y, Luitjens J, et al. Comparison of quantitative susceptibility mapping methods for iron-sensitive susceptibility imaging at 7T: An evaluation in healthy subjects and patients with Huntington’s disease. NeuroImage. 2023;265:119788.

    Article  CAS  PubMed  Google Scholar 

  286. Blazejewska AI, Al-Radaideh AM, Wharton S, Lim SY, Bowtell RW, Constantinescu CS, et al. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: A 7 Tesla MRI study. J Magn Reson Imaging. 2015;41:1065–70.

    Article  PubMed  Google Scholar 

  287. Hametner S, Dal-Bianco A. 7T MRI: Measuring white matter changes in MS and iron content in brain. J Neurol Sci. 2019;405:35–6.

    Article  Google Scholar 

  288. Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage. 2013;65:299–314.

    Article  PubMed  Google Scholar 

  289. Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med. 2013;69:467–76.

    Article  PubMed  Google Scholar 

  290. Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging. 2017;46:951–71.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schäfer A, Peters AM, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging. 2012;35:48–55.

    Article  PubMed  Google Scholar 

  292. Reichenbach JR. The future of susceptibility contrast for assessment of anatomy and function. NeuroImage. 2012;62:1311–5.

    Article  PubMed  Google Scholar 

  293. Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, et al. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions—A Single-Center Experience. Am J Roentgenol. 2023;221:788–804.

    Article  Google Scholar 

  294. Aghaeifar A, Zhou J, Heule R, Tabibian B, Schölkopf B, Jia F, et al. A 32-channel multi-coil setup optimized for human brain shimming at 9.4T. Magn Reson Med. 2020;83:749–64.

    Article  PubMed  Google Scholar 

  295. Ibrahim TS, Mitchell C, Schmalbrock P, Lee R, Chakeres DW. Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla. Magn Reson Med. 2005;54:683–90.

    Article  PubMed  Google Scholar 

  296. Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PM. Dielectric resonances and B(1) field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imaging. 2001;19:219–26.

    Article  CAS  PubMed  Google Scholar 

  297. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001;46:24–30.

    Article  CAS  PubMed  Google Scholar 

  298. Weiskopf N, Lutti A, Helms G, Novak M, Ashburner J, Hutton C. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). NeuroImage. 2011;54:2116–24.

    Article  PubMed  Google Scholar 

  299. Haast RAM, Ivanov D, Uludağ K. The impact of B1+ correction on MP2RAGE cortical T 1 and apparent cortical thickness at 7T. Hum Brain Mapp. 2018;39:2412–25.

    Article  PubMed  PubMed Central  Google Scholar 

  300. van der Kolk AG, Hendrikse J, Zwanenburg JJM, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radio. 2013;82:708–18.

    Article  Google Scholar 

  301. Collins CM, Liu W, Wang J, Gruetter R, Vaughan JT, Ugurbil K, et al. Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. J Magn Reson Imaging JMRI. 2004;19:650–6.

    Article  PubMed  Google Scholar 

  302. Iwan E, Yang J, Enders J, Napp AE, Rief M, Dewey M. Patient preferences for development in MRI scanner design: a survey of claustrophobic patients in a randomized study. Eur Radio. 2021;31:1325–35.

    Article  Google Scholar 

  303. Theysohn JM, Kraff O, Eilers K, Andrade D, Gerwig M, Timmann D, et al. Vestibular Effects of a 7 Tesla MRI Examination Compared to 1.5 T and 0 T in Healthy Volunteers. PLoS ONE. 2014;9:e92104.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Pogson JM, Shemesh A, Roberts DC, Zee DS, Otero-Milan J, Ward BK. Longer duration entry mitigates nystagmus and vertigo in 7-Tesla MRI. Front Neurol. 2023;14:1255105.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Havsteen I, Ohlhues A, Madsen KH, Nybing JD, Christensen H, Christensen A. Are Movement Artifacts in Magnetic Resonance Imaging a Real Problem?—A Narrative Review. Front Neurol. 2017;8:232.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Makowski C, Lepage M, Evans AC. Head motion: the dirty little secret of neuroimaging in psychiatry. J Psychiatry Neurosci JPN. 2019;44:62–8.

    Article  PubMed  Google Scholar 

  307. Ghassaban K, Liu S, Jiang C, Haacke EM. Quantifying iron content in magnetic resonance imaging. NeuroImage. 2019;187:77–92.

    Article  CAS  PubMed  Google Scholar 

  308. Liu C, Wei H, Gong N-J, Cronin M, Dibb R, Decker K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography. 2015;1:3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Liu S, Mok K, Neelavalli J, Cheng Y-CN, Tang J, Ye Y, et al. Improved MR venography using quantitative susceptibility-weighted imaging. J Magn Reson Imaging. 2014;40:698–708.

    Article  PubMed  Google Scholar 

  310. Schallmo M-P, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, et al. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. NeuroImage. 2023;272:120060.

    Article  PubMed  Google Scholar 

  311. Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. NeuroImage. 2018;168:7–32.

    Article  PubMed  Google Scholar 

  312. Vu A, Auerbach E, Lenglet C, Moeller S, Sotiropoulos S, Jbabdi S, et al. High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project. NeuroImage. 2015;122:318–31.

    Article  CAS  PubMed  Google Scholar 

  313. Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele P-F, Yacoub E, et al. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. NeuroImage. 2019;184:396–408.

    Article  PubMed  Google Scholar 

  314. Krishnamurthy N, Santini T, Wood S, Kim J, Zhao T, Aizenstein HJ, et al. Computational and experimental evaluation of the Tic-Tac-Toe RF coil for 7 Tesla MRI. PloS One. 2019;14:e0209663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Santini T, Zhao Y, Wood S, Krishnamurthy N, Kim J, Farhat N, et al. In-vivo and numerical analysis of the eigenmodes produced by a multi-level Tic-Tac-Toe head transmit array for 7 Tesla MRI. PloS One. 2018;13:e0206127.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Stockmann JP, Wald LL. In vivo B0 field shimming methods for MRI at 7 T. NeuroImage. 2018;168:71–87.

    Article  PubMed  Google Scholar 

  317. Hetherington H, Moon C, Schwerter M, Shah J, Pan J. Dynamic B0 Shimming for Multi-band Imaging using High Order Spherical Harmonic Shims. Magn Reson Med. 2021;85:531–43.

    Article  PubMed  Google Scholar 

  318. Das N, Ren J, Spence JS, Rackley A, Chapman SB Relationship of Parieto-Occipital Brain Energy Phosphate Metabolism and Cognition Using 31P MRS at 7-Tesla in Amnestic Mild Cognitive Impairment. Front Aging Neurosci. 2020;12:222.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the material; authors FJC, ACP, VJS, HH, KMP, TI, DKS, and BL wrote and edited the manuscript. Authors FJC, ACP, and BL were supported by NIMH grant R01 MH067924 to BL and support from the Staunton Farm Foundation. Author VJS was supported by NIH grant T32 MH016804. Author KMP was supported by NIMH grants R01 MH112584 and R01 MH115026, and VA ORD grant 1 I01 CX00001855. Author TI was supported by NIH grants R01 AG063525, R01 MH111265, and R56 AG074467. Author DKS was supported by NIMH grant R01 MH124705.

Corresponding author

Correspondence to Finnegan J. Calabro.

Ethics declarations

Competing interests

Author HH is employed by Resonance Research, Inc. Author TSI is chairperson External Advisory Committee, Center of Biomedical Research Excellence (COBRE): NIH-P20GM135009, and consultant for DxTx Medical, Inc. Authors FJC, ACP, VJS, KMP, DKS, AF, PV and BL declare that they have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabro, F.J., Parr, A.C., Sydnor, V.J. et al. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01980-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01980-6

Search

Quick links