Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats

Abstract

Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD’s antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KET induces schizophrenia-like behavior and dysregulates dopaminergic activity; CBD ameliorates behavioral deficits while modulates dopaminergic effects.
Fig. 2: CBD modulates KET-induced glutamatergic dysregulation in a region-specific manner.
Fig. 3: CBD modulates KET-induced brain oscillatory activity alterations.
Fig. 4: The modulatory effects of CBD on ketamine-induced reduction of the parvalbumin interneuron density in the prefrontal cortex and ventral hippocampus.
Fig. 5: The modulatory effects of CBD on ketamine-induced alterations related to the ECS function in the ventral CA1.

Similar content being viewed by others

Data availability

Data are available upon request to the corresponding author.

References

  1. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—An Overview. JAMA Psychiatry. 2020;77:201–10.

    Article  PubMed  Google Scholar 

  2. Sotiropoulos MG, Poulogiannopoulou E, Delis F, Dalla C, Antoniou K, Kokras N. Innovative screening models for the discovery of new schizophrenia drug therapies: an integrated approach. Expert Opin Drug Discov. 2021;16:791–806.

    Article  CAS  PubMed  Google Scholar 

  3. Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr Bull. 2019;45:180–9.

    Article  PubMed  Google Scholar 

  4. Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, et al. Assessing Brain Metabolism With 7-T Proton Magnetic Resonance Spectroscopy in Patients With First-Episode Psychosis. JAMA Psychiatry. 2019;76:314–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taylor R, Neufeld RWJ, Schaefer B, Densmore M, Rajakumar N, Osuch EA, et al. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task. NPJ Schizophr. 2015;1:15028.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK. Nature of Glutamate Alterations in Schizophrenia: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. JAMA Psychiatry. 2016;73:665–74.

    Article  PubMed  Google Scholar 

  7. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019;42:205–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liljeholm M, O’Doherty JP. Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci. 2012;16:467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alexander GE, DeLong MR, Strick PL. Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  10. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, et al. Abnormal Frontostriatal Interactions in People With Prodromal Signs of Psychosis: A Multimodal Imaging Study. Arch Gen Psychiatry. 2010;67:683–91.

    Article  PubMed  Google Scholar 

  11. Mori H. Site of Ketamine Action on the NMDA Receptor BT - Ketamine: From Abused Drug to Rapid-Acting Antidepressant. In: Hashimoto K, Ide S, Ikeda K, editors. Singapore: Springer Singapore; 2020. 47–67.

  12. Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23:59–69.

    Article  CAS  PubMed  Google Scholar 

  13. Nikiforuk A, Popik P. Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology. 2012;220:65–74.

    Article  CAS  PubMed  Google Scholar 

  14. Nikiforuk A, Popik P. The effects of acute and repeated administration of ketamine on attentional performance in the five-choice serial reaction time task in rats. European Neuropsychopharmacol. 2014;24:1381–93.

    Article  CAS  Google Scholar 

  15. Sampaio LRL, Cysne Filho FMS, de Almeida JC, Diniz D, dos S, Patrocínio CFV, et al. Advantages of the Alpha-lipoic Acid Association with Chlorpromazine in a Model of Schizophrenia Induced by Ketamine in Rats: Behavioral and Oxidative Stress evidences. Neuroscience. 2018;373:72–81.

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher A, Sivanandan B, Tolledo EC, Woldegabriel J, Ito R. Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Kozela E, Krawczyk M, Kos T, Juknat A, Vogel Z, Popik P. Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats. Mol Neurobiol. 2020;57:1733–47.

    Article  CAS  PubMed  Google Scholar 

  18. Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry. 2021;26:2562–76.

    Article  CAS  PubMed  Google Scholar 

  19. Hamm JP, Peterka DS, Gogos JA, Yuste R. Altered Cortical Ensembles in Mouse Models of Schizophrenia. Neuron. 2017;94:153–167.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt MJ, Mirnics K. Neurodevelopment, GABA System Dysfunction, and Schizophrenia. Neuropsychopharmacology. 2015;40:190–206. https://doi.org/10.1038/npp.2014.95.

  21. Yavi M, Lee H, Henter ID, Park LT, Zarate CAJ. Ketamine treatment for depression: a review. Discover mental health. 2022;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Souza DCBTIR of N. Cannabinoids and Psychosis. In: Integrating the Neurobiology of Schizophrenia. International Review of Neurobiology, Academic Press; 2007, p. 289–326.

  23. Snyder SH. Phencyclidine. Nature. 1980;285:355–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sherif M, Radhakrishnan R, D’Souza DC, Ranganathan M. Human Laboratory Studies on Cannabinoids and Psychosis. Biol Psychiatry. 2016;79:526–38.

    Article  CAS  PubMed  Google Scholar 

  25. Ranganathan M, Cortes-Briones J, Radhakrishnan R, Thurnauer H, Planeta B, Skosnik P, et al. Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biol Psychiatry. 2016;79:997–1005.

    Article  CAS  PubMed  Google Scholar 

  26. Skosnik PD, Cortes-Briones JA, Hajós M. It’s All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis. Biol Psychiatry. 2016;79:568–77.

    Article  CAS  PubMed  Google Scholar 

  27. Fakhoury M. Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia. Mol Neurobiol. 2017;54:768–78.

    Article  CAS  PubMed  Google Scholar 

  28. Rubino T, Parolaro D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol Psychiatry. 2016;79:578–85.

    Article  CAS  PubMed  Google Scholar 

  29. Poulia N, Delis F, Brakatselos C, Polissidis A, Koutmani Y, Kokras N, et al. Detrimental effects of adolescent escalating low‐dose Δ9‐tetrahydrocannabinol lead to a specific bio‐behavioural profile in adult male rats. Br J Pharmacol. 2021;178:1722–36.

  30. Poulia N, Delis F, Brakatselos C, Lekkas P, Kokras N, Dalla C, et al. Escalating low-dose Δ9-tetrahydrocannabinol exposure during adolescence induces differential behavioral and neurochemical effects in male and female adult rats. Eur J Neurosci. 2020;52:2681–93.

  31. Lopez-Rodriguez AB, Llorente-Berzal A, Garcia-Segura LM, Viveros MP. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats. Br J Pharmacol. 2014;171:1435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galanopoulos A, Polissidis A, Georgiadou G, Papadopoulou-Daifoti Z, Nomikos GG, Pitsikas N, et al. WIN55,212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol Biochem Behav. 2014;124:58–66.

    Article  CAS  PubMed  Google Scholar 

  33. Hasanein P, Teimuri Far M. Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats. Pharmacol Biochem Behav. 2015;131:130–5.

    Article  CAS  PubMed  Google Scholar 

  34. Cortes-Briones J, Skosnik PD, Mathalon D, Cahill J, Pittman B, Williams A, et al. 9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans. Neuropsychopharmacology. 2015;40:2124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu W, Li H, Wang L, Zhang J, Liu C, Wan X, et al. Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice. Nat Commun. 2020;11:5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2:e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front Pharmacol. 2016;7:1–11.

    Article  Google Scholar 

  38. Rodrigues da Silva N, Gomes FV, Sonego AB, Silva NR da, Guimarães FS. Cannabidiol attenuates behavioral changes in a rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2 receptors. Pharmacol Res. 2020;156:104749.

    Article  CAS  PubMed  Google Scholar 

  39. Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, et al. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol. 2020;177:114004.

    Article  CAS  PubMed  Google Scholar 

  40. Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, et al. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun. 2019;81:574–87.

    Article  CAS  PubMed  Google Scholar 

  41. Valvassori SS, Elias G, De Souza B, Petronilho F, Dal-Pizzol F, Kapczinski F, et al. Effects of cannabidiol on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychopharmacol. 2011;25:274–9.

    Article  CAS  PubMed  Google Scholar 

  42. Long LE, Chesworth R, Huang XF, Wong A, Spiro A, McGregor IS, et al. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PLoS One. 2012;7:e34129.

  43. Brakatselos C, Delis F, Asprogerakas MZ, Lekkas P, Tseti I, Tzimas PS, et al. Cannabidiol Modulates the Motor Profile and NMDA Receptor-related Alterations Induced by Ketamine. Neuroscience. 2021;454:105–15.

  44. Elsaid S, Kloiber S, Le Foll B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings. 1st ed. Vol. 167, Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2019. p. 25–75.

  45. Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30:1037–43.

    Article  CAS  PubMed  Google Scholar 

  46. Renard J, Norris C, Rushlow W, Laviolette SR. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci Biobehav Rev. 2017.

  47. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007.

  48. Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–52. https://pubmed.ncbi.nlm.nih.gov/11606325/.

  49. Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015.

  50. De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163:1479–94.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lu HC, Mackie K. Review of the Endocannabinoid System. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:607–15.

    PubMed  Google Scholar 

  52. Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci. 1999;11:4213–25.

    Article  CAS  PubMed  Google Scholar 

  53. Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A “Dimmer-Switch” Hypothesis. Curr Neuropharmacol. 2021;19:925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karson MA, Tang AH, Milner TA, Alger BE. Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus. J Neurosci 2009;29:4140–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56:33–42.

    Article  CAS  PubMed  Google Scholar 

  56. Dudok B, Klein PM, Hwaun E, Lee BR, Yao Z, Fong O, et al. Alternating sources of perisomatic inhibition during behavior. Neuron. 2021;109:997–1012.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lupica CR, Hu Y, Devinsky O, Hoffman AF. Cannabinoids as hippocampal network administrators. Neuropharmacology. 2017;124:25–37.

    Article  CAS  PubMed  Google Scholar 

  58. Poulia N, Delis F, Brakatselos C, Ntoulas G, Asprogerakas MZ, Antoniou K. CBD Effects on Motor Profile and Neurobiological Indices Related to Glutamatergic Function Induced by Repeated Ketamine Pre-Administration. Front Pharmacol. 2021;12:1–15.

    Article  Google Scholar 

  59. Kokras N, Dioli C, Paravatou R, Sotiropoulos MG, Delis F, Antoniou K, et al. Psychoactive properties of BNN27, a novel neurosteroid derivate, in male and female rats. Psychopharmacology. 2020;237:2435–49.

    Article  CAS  PubMed  Google Scholar 

  60. Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, et al. Tau protein is essential for stress-induced brain pathology. Proc Natl Acad Sci USA 2016;113:E3755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, et al. The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry. 2017;23:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tzimas PS, Petrakis EA, Halabalaki M, Skaltsounis LA. Effective determination of the principal non-psychoactive cannabinoids in fiber-type Cannabis sativa L. by UPLC-PDA following a comprehensive design and optimization of extraction methodology. Anal Chim Acta. 2021.

  63. Wolff AR, Bygrave AM, Sanderson DJ, Boyden ES, Bannerman DM, Kullmann DM, et al. Optogenetic induction of the schizophrenia-related endophenotype of ventral hippocampal hyperactivity causes rodent correlates of positive and cognitive symptoms. Sci Rep. 2018;8:12871.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry. 2006;59:1198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lodge DJ, Grace AA. Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. Int J Neuropsychopharmacol. 2012;15:69–76.

    Article  CAS  PubMed  Google Scholar 

  66. Renard J, Loureiro M, Rosen LG, Zunder J, de Oliveira C, Schmid S, et al. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway. J Neurosci. 2016;36:5160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31:47–59.

    Article  CAS  PubMed  Google Scholar 

  68. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19:15–33.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Polissidis A, Chouliara O, Galanopoulos A, Naxakis G, Papahatjis D, Papadopoulou-Daifoti Z, et al. Cannabinoids negatively modulate striatal glutamate and dopamine release and behavioural output of acute d-amphetamine. Behav Brain Res. 2014.

  70. Weinberger DR, Berman KF. Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr Bull. 1988;14:157–68.

    Article  CAS  PubMed  Google Scholar 

  71. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rothman DL, Behar KL, Hyder F, Shulman RG. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol. 2003;65:401–27.

    Article  CAS  PubMed  Google Scholar 

  73. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology. 2018;43:2154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 1998;95:316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell. 2003;112:631–43.

    Article  CAS  PubMed  Google Scholar 

  76. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000;405:955–9.

    Article  CAS  PubMed  Google Scholar 

  77. Diering GH, Heo S, Hussain NK, Liu B, Huganir RL. Extensive phosphorylation of AMPA receptors in neurons. Proc Natl Acad Sci USA 2016;113:E4920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, et al. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2001;276:693–9.

    Article  CAS  PubMed  Google Scholar 

  79. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002;295:491–5.

    Article  CAS  PubMed  Google Scholar 

  80. Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology. 2008;55:1081–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.

    Article  CAS  PubMed  Google Scholar 

  82. Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS. Gamma Oscillatory Power is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia. Neuropsychopharmacology. 2010;35:2590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Burgos G, Fish KN, Lewis DA. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast. 2011;2011.

  84. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38:950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ferguson BR, Gao WJ. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits. 2018;12:37.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Santos-Silva T, Dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes F V. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull. 2023.

  87. Du Y, Grace AA. Loss of parvalbumin in the hippocampus of MAM schizophrenia model rats is attenuated by peripubertal diazepam. Int J Neuropsychopharmacol. 2016;19:1–5.

    Article  Google Scholar 

  88. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009;29:2344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell. 2019;178:1387–1402.e14.

    Article  CAS  PubMed  Google Scholar 

  90. Skosnik PD, Cortes-Briones JA, Hajós M, Lupica CR, Hu Y, Devinsky O, et al. Cannabinoid–glutamate interactions and neural oscillations: implications for psychosis. Neuropharmacology. 2015;304:1–7.

    Google Scholar 

  91. Areias J, Sola C, Chastagnier Y, Pico J, Bouquier N, Dadure C, et al. Whole-brain characterization of apoptosis after sevoflurane anesthesia reveals neuronal cell death patterns in the mouse neonatal neocortex. Sci Rep. 2023;13:14763 https://doi.org/10.1038/s41598-023-41750-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Honeycutt JA, Chrobak JJ. Parvalbumin Loss Following Chronic Sub-Anesthetic NMDA Antagonist Treatment is Age-Dependent in the Hippocampus: Implications for Modeling NMDA Hypofunction. Neuroscience. 2018;393:73–82. https://www.sciencedirect.com/science/article/pii/S0306452218306365.

    Article  CAS  PubMed  Google Scholar 

  93. Früh S, Romanos J, Panzanelli P, Bürgisser D, Tyagarajan SK, Campbell KP, et al. Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells. J Neurosci. 2016;36:10296–313.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dudok B, Soltesz I. Imaging the endocannabinoid signaling system. J Neurosci Methods. 2022;367:109451.

    Article  CAS  PubMed  Google Scholar 

  95. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, et al. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci. 1998;18:9733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Andrási T, Veres JM, Rovira-Esteban L, Kozma R, Vikór A, Gregori E, et al. Differential excitatory control of 2 parallel basket cell networks in amygdala microcircuits. PLoS Biol. 2017;15:e2001421.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vereczki VK, Veres JM, Müller K, Nagy GA, Rácz B, Barsy B, et al. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanatomy. 2016;10.

  98. Silote GP, Sartim A, Sales A, Eskelund A, Guimarães FS, Wegener G, et al. Emerging evidence for the antidepressant effect of cannabidiol and the underlying molecular mechanisms. J Chem Neuroanat. 2019;98:104–16.

    Article  CAS  PubMed  Google Scholar 

  99. Campos AC, Fogaça MV, Scarante FF, Joca SRL, Sales AJ, Gomes FV, et al. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front Pharmacol. 2017;8:269.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sales AJ, Fogaça MV, Sartim AG, Pereira VS, Wegener G, Guimarães FS, et al. Cannabidiol Induces Rapid and Sustained Antidepressant-Like Effects Through Increased BDNF Signaling and Synaptogenesis in the Prefrontal Cortex. Mol Neurobiol. 2019;56:1070–81.

    Article  CAS  PubMed  Google Scholar 

  101. Keilhoff G, Becker A, Grecksch G, Wolf G, Bernstein HG. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience. 2004;126:591–8.

    Article  CAS  PubMed  Google Scholar 

  102. Keilhoff G, Bernstein HG, Becker A, Grecksch G, Wolf G. Increased neurogenesis in a rat ketamine model of schizophrenia. Biol Psychiatry. 2004;56:317–22.

    Article  CAS  PubMed  Google Scholar 

  103. McCutcheon R, Beck K, Jauhar S, Howes OD. Defining the Locus of Dopaminergic Dysfunction in Schizophrenia: A Meta-analysis and Test of the Mesolimbic Hypothesis. Schizophr Bull. 2018;44:1301–11.

    Article  PubMed  Google Scholar 

  104. Howes OD, Bukala BR, Beck K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Rev Neurol. 2024;20:22–35.

    Article  PubMed  Google Scholar 

  105. Hall MH, Jensen JE, Du F, Smoller JW, O’Connor L, Spencer KM, et al. Frontal P3 event-related potential is related to brain glutamine/glutamate ratio measured in vivo. Neuroimage. 2015;111:186–91.

    Article  CAS  PubMed  Google Scholar 

  106. Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64:281–9.

    Article  CAS  PubMed  Google Scholar 

  107. Gao R. Interpreting the electrophysiological power spectrum. J Neurophysiol. 2016;115:628–30.

    Article  PubMed  Google Scholar 

  108. Abram SV, Roach BJ, Fryer SL, Calhoun VD, Preda A, van Erp TGM, et al. Validation of ketamine as a pharmacological model of thalamic dysconnectivity across the illness course of schizophrenia. Mol Psychiatry. 2022;27:2448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry. 2020.

  110. Stark T, Ruda-Kucerova J, Iannotti FA, D’Addario C, Di Marco R, Pekarik V, et al. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology. 2019;146:212–21.

    Article  CAS  PubMed  Google Scholar 

  111. Fauzan M, Oubraim S, Yu M, Glaser ST, Kaczocha M, Haj-Dahmane S. Fatty Acid-Binding Protein 5 Modulates Brain Endocannabinoid Tone and Retrograde Signaling in the Striatum. Front Cell Neurosci. 2022;16.

  112. Bustillo JR, Rowland LM, Mullins P, Jung R, Chen H, Qualls C, et al. 1H-MRS at 4 tesla in minimally treated early schizophrenia. Mol Psychiatry. 2010;15:629–36.

    Article  CAS  PubMed  Google Scholar 

  113. Salvadore G, Cornwell BR, Sambataro F, Latov D, Colon-Rosario V, Carver F, et al. Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology. 2010;35:1415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou ZQ, Zhang GF, Li XM, Liu XY, Wang N, Qiu LL, et al. Loss of Phenotype of Parvalbumin Interneurons in Rat Prefrontal Cortex Is Involved in Antidepressant- and Propsychotic-Like Behaviors Following Acute and Repeated Ketamine Administration. Mol Neurobiol. 2015;51:808–19.

    Article  CAS  PubMed  Google Scholar 

  115. Kocsis B, Brown RE, Mccarley RW, Hajos M. Impact of Ketamine on Neuronal Network Dynamics: Translational Modeling of Schizophrenia-Relevant Deficits. CNS Neurosci Ther. 2013;19:437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Benjamin KJM, Arora R, Feltrin AS, Pertea G, Giles HH, Stolz JM, et al. Sex affects transcriptional associations with schizophrenia across the dorsolateral prefrontal cortex, hippocampus, and caudate nucleus. Nat Commun. 2024;15:3980. https://doi.org/10.1038/s41467-024-48048-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Eranti S V, MacCabe JH, Bundy H, Murray RM. Gender difference in age at onset of schizophrenia: a meta-analysis. Psychol Med. 43:155–67. https://www.cambridge.org/core/product/A078443BB1FB0B06F638F43B89AADD6D.

  118. Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A, et al. Sex Differences in the Human Brain Transcriptome of Cases With Schizophrenia. Biol Psychiatry. 2022;91:92–101. https://www.sciencedirect.com/science/article/pii/S000632232101180X.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Sofia Bellou (Network of Research Supporting Laboratories (NRSL) of the University of Ioannina and the foundation for Research & Technology-Hellas, Institute of Molecular Biology and Biotechology, Department of Biomedical Research (FORTH/IMBB-BR) foundation for Research & Technology-Hellas) for the support she provided in confocal imaging. The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant to CB (Fellowship Number: 1203), supervised by KA. An International Brain Research Organization (IBRO) short stay Grant to CB supported their stay at the Life and Health Sciences Research Institute (ICVS), University of Minho for performing electrophysiological experiments under supervision of JFO. Further funding to JFO from Bial Foundation (037/18) and”la Caixa” Foundation (LCF/PR/HR21/52410024); ICVS Scientific Microscopy Platform, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122; by National funds, through the Foundation for Science and Technology (FCT) - project UIDB/50026/2020. Additional funding to IS from NIH subcontract RF1AG069941.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization-study design: CB, KA; Funding acquisition: CB, FD, KA, Methodological design: CB, AP, JFO, KA; Investigation: CB, AP, GN, MZA, OT, AV-I, GN, AD, PT, LS, JS, FD, JFO, AD, KA; Methodology: CB, AP, GN, AD, JS, JFO, KA; Data analysis: CB, AP, JFO, KA; Data curation: CB, JFO, KA; Visualization: CB, JFO, IS, KA; manuscript preparation: CB, KA; manuscript editing: CB, AP, FD, JFO, IS, KA.

Corresponding author

Correspondence to Katerina Antoniou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brakatselos, C., Polissidis, A., Ntoulas, G. et al. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01977-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01977-1

Search

Quick links