Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome

Abstract

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dose-dependent acute effects of chlorzoxazone (CHLOR) in Fmr1-KO mice.
Fig. 2: Acute behavioral effects of chlorzoxazone (CHLOR, 5 mg/kg) compared with gaboxadol (GAB, 0.5 and 3 mg/kg) and metformin (MET, 200 mg/kg).
Fig. 3: Chronic behavioral effects of chlorzoxazone (CHLOR, 5 mg/kg) compared with gaboxadol (GAB, 0.5 and 3 mg/kg) and metformin (MET, 200 mg/kg).
Fig. 4: Effects of chlorzoxazone on neuronal activity and structural plasticity of Fmr1-KO mice.
Fig. 5: Effects of chlorzoxazone (CHLOR) on hippocampal and cortical BKCa currents in Fmr1-KO mice and their WT littermates.

Similar content being viewed by others

Data availability

All original data are available upon request to the corresponding author.

References

  1. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817–22.

    Article  CAS  PubMed  Google Scholar 

  2. Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2012;7:219–45.

    Article  CAS  PubMed  Google Scholar 

  3. Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ. Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA. 2001;98:7101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tranfaglia MR. The psychiatric presentation of fragile X: evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev Neurosci. 2011;33:337–48.

    Article  CAS  PubMed  Google Scholar 

  5. Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2022;19:248–62. https://doi.org/10.1007/s13311-022-01183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson D, Clark C, Hagerman R. Targeted treatments for fragile X syndrome. Adv Neurobiol. 2023;30:225–53. https://doi.org/10.1007/978-3-031-21054-9_10

    Article  PubMed  Google Scholar 

  7. Protic D, Salcedo-Arellano MJ, Dy JB, Potter LA, Hagerman RJ. New targeted treatments for fragile X syndrome. Curr Pediatr Rev. 2019;15:251–8. https://doi.org/10.2174/1573396315666190625110748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang LW, Berry-Kravis E, Hagerman RJ. Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics. 2010;7:264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wen TH, Binder DK, Ethell IM, Razak KA. The perineuronal ‘safety’ net? Perineuronal net abnormalities in neurological disorders. Front Mol Neurosci. 2018;11:270 https://doi.org/10.3389/fnmol.2018.00270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23:674–7. https://doi.org/10.1038/nm.4335

    Article  CAS  PubMed  Google Scholar 

  11. Gkogkas CG, Khoutorsky A, Cao R, Jafarnejad SM, Prager-Khoutorsky M, Giannakas N, et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 2014;9:1742–55. https://doi.org/10.1016/j.celrep.2014.10.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome. Front Behav Neurosci. 2019;13:141. https://doi.org/10.3389/fnbeh.2019.00141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olmos-Serrano JL, Corbin JG, Burns MP. The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev Neurosci. 2011;33:395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wafford KA, Ebert B. Gaboxadol-a new awakening in sleep. Curr Opin Pharm. 2006;6:30–6. https://doi.org/10.1016/j.coph.2005.10.004

    Article  CAS  Google Scholar 

  15. Bartholini G. GABA receptor agonists: pharmacological spectrum and therapeutic actions. Med Res Rev. 1985;5:55–75. https://doi.org/10.1002/med.2610050103

    Article  CAS  PubMed  Google Scholar 

  16. N’Gouemo P. BKCa channel dysfunction in neurological diseases. Front Physiol. 2014;5:373. https://doi.org/10.3389/fphys.2014.00373

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kshatri AS, Gonzalez-Hernandez A, Giraldez T. Physiological roles and therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. https://doi.org/10.3389/fnmol.2018.00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ancaten-Gonzalez C, Segura I, Alvarado-Sanchez R, Chavez AE, Latorre R. Ca(2+)- and voltage-activated K(+) (BK) channels in the nervous system: one gene, a myriad of physiological functions. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24043407

  19. Orfali R, Albanyan N. Ca(2+)-sensitive potassium channels. Molecules. 2023;28. https://doi.org/10.3390/molecules28020885

  20. Echeverria F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernandez M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K(+) (BK) channel in health and disease. Front Pharm. 2024;15:1373507 https://doi.org/10.3389/fphar.2024.1373507

    Article  CAS  Google Scholar 

  21. Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol. 2016;594:83–97. https://doi.org/10.1113/JP271031

    Article  CAS  PubMed  Google Scholar 

  22. Deng PY, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron. 2013;77:696–711. https://doi.org/10.1016/j.neuron.2012.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kshatri A, Cerrada A, Gimeno R, Bartolome-Martin D, Rojas P, Giraldez T. Differential regulation of BK channels by fragile X mental retardation protein. J Gen Physiol. 2020;152. https://doi.org/10.1085/jgp.201912502

  24. Hebert B, Pietropaolo S, Meme S, Laudier B, Laugeray A, Doisne N, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis. 2014;9:124.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci. 2014;17:1701–9. https://doi.org/10.1038/nn.3864

    Article  CAS  PubMed  Google Scholar 

  26. Myrick LK, Deng PY, Hashimoto H, Oh YM, Cho Y, Poidevin MJ, et al. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc Natl Acad Sci USA. 2015;112:949–56. https://doi.org/10.1073/pnas.1423094112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang ZW. Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol. 2008;38:153–66. https://doi.org/10.1007/s12035-008-8039-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol. 2011;105:1651–9. https://doi.org/10.1152/jn.00058.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61. https://doi.org/10.1016/j.cell.2011.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, et al. Potential involvement of impaired BK(Ca) channel function in sensory defensiveness and some behavioral disturbances induced by unfamiliar environment in a mouse model of fragile X syndrome. Neuropsychopharmacology. 2018;43:492–502. https://doi.org/10.1038/npp.2017.149

    Article  CAS  PubMed  Google Scholar 

  31. Hohmann N, Blank A, Burhenne J, Suzuki Y, Mikus G, Haefeli WE. Simultaneous phenotyping of CYP2E1 and CYP3A using oral chlorzoxazone and midazolam microdoses. Br J Clin Pharm. 2019;85:2310–20. https://doi.org/10.1111/bcp.14040

    Article  CAS  Google Scholar 

  32. Martindale W. The extra pharmacopoeia. 30th ed. Amer Pharmaceutical Assn; London, UK; 1993.

  33. Ferraguto C, Bouleau Y, Peineau T, Dulon D, Pietropaolo S. Hyperacusis in the adult Fmr1-KO mouse model of fragile X syndrome: the therapeutic relevance of cochlear alterations and BKCa channels. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms241411863

  34. Deng L, Li H, Su X, Zhang Y, Xu H, Fan L, et al. Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death Dis. 2020;11:158 https://doi.org/10.1038/s41419-020-2357-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai Y, Ma X. Chlorzoxazone exhibits neuroprotection against Alzheimer’s disease by attenuating neuroinflammation and neurodegeneration in vitro and in vivo. Int Immunopharmacol. 2020;88:106790 https://doi.org/10.1016/j.intimp.2020.106790

    Article  CAS  PubMed  Google Scholar 

  36. Egorova PA, Gavrilova AV, Bezprozvanny IB. Ataxic symptoms in huntington’s disease transgenic mouse model are alleviated by chlorzoxazone. Front Neurosci. 2020;14:279. https://doi.org/10.3389/fnins.2020.00279

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19:1340–53. https://doi.org/10.1016/j.chembiol.2012.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marinina KS, Bezprozvanny IB, Egorova PA. A chlorzoxazone-folic acid combination improves cognitive affective decline in SCA2-58Q mice. Sci Rep. 2023;13:12588 https://doi.org/10.1038/s41598-023-39331-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Egorova PA, Bezprozvanny IB. Electrophysiological studies support utility of positive modulators of SK channels for the treatment of spinocerebellar ataxia type 2. Cerebellum. 2022;21:742–9. https://doi.org/10.1007/s12311-021-01349-1

    Article  CAS  PubMed  Google Scholar 

  40. Liu YC, Lo YK, Wu SN. Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res. 2003;959:86–97. https://doi.org/10.1016/s0006-8993(02)03730-7

    Article  CAS  PubMed  Google Scholar 

  41. Jung YH, Hong SI, Ma SX, Hwang JY, Kim JS, Lee JH, et al. Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther. 2014;22:453–9. https://doi.org/10.4062/biomolther.2014.058

    Article  Google Scholar 

  42. Oddi D, Crusio WE, D’Amato FR, Pietropaolo S. Monogenic mouse models of social dysfunction: implications for autism. Behav Brain Res. 2013;251:75–84.

    Article  CAS  PubMed  Google Scholar 

  43. Pietropaolo S, Guilleminot A, Martin B, D’Amato FR, Crusio WE. Genetic-background modulation of core and variable autistic-like symptoms in FMR1 knock-out mice. PLoS ONE. 2011;6:e17073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pietropaolo S, Goubran MG, Joffre C, Aubert A, Lemaire-Mayo V, Crusio WE, et al. Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice. Psychoneuroendocrinology. 2014;49:119–29. https://doi.org/10.1016/j.psyneuen.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  45. Pietropaolo S, Subashi E. Mouse models of fragile X syndrome. In: Pietropaolo S, Sluyter F, Crusio WE, editors. Behavioral genetics of the mouse. Cambridge: Cambridge University Press; 2014. pp. 146–63.

  46. Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L, Zu T, Hoogeveen-Westerveld M, Severijnen L, et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis. 2006;21:549–55.

    Article  CAS  PubMed  Google Scholar 

  47. Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP. A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav. 2004;3:337–59.

    Article  CAS  PubMed  Google Scholar 

  48. Gaudissard J, Ginger M, Premoli M, Memo M, Frick A, Pietropaolo S. Behavioral abnormalities in the Fmr1-KO2 mouse model of fragile X syndrome: the relevance of early life phases. Autism Res. 2017;10:1584–96. https://doi.org/10.1002/aur.1814

    Article  PubMed  Google Scholar 

  49. Gauducheau M, Lemaire-Mayo V, D’Amato FR, Oddi D, Crusio WE, Pietropaolo S. Age-specific autistic-like behaviors in heterozygous Fmr1-KO female mice. Autism Res. 2017;10:1067–78. https://doi.org/10.1002/aur.1743

    Article  PubMed  Google Scholar 

  50. Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: a systematic review and meta-analysis of the fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev. 2022;139:104722 https://doi.org/10.1016/j.neubiorev.2022.104722

    Article  PubMed  Google Scholar 

  51. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412 https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oddi D, Subashi E, Middei S, Bellocchio L, Lemaire-Mayo V, Guzman M, et al. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome. Neuropsychopharmacology. 2015;40:1113–22. https://doi.org/10.1038/npp.2014.291

    Article  PubMed  PubMed Central  Google Scholar 

  53. Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci. 2022;16:917183. https://doi.org/10.3389/fncel.2022.917183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, et al. Early administration of the phytocannabinoid cannabidivarin prevents the neurobehavioral abnormalities associated with the Fmr1-KO mouse model of fragile X syndrome. Cells. 2023;12. https://doi.org/10.3390/cells12151927

  55. De Arce MA, Kearns A. The fragile X syndrome: the patients and their chromosomes. J Med Genet. 1984;21:84–91. https://doi.org/10.1136/jmg.21.2.84

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hagerman RJ, Amiri K, Cronister A. Fragile X checklist. Am J Med Genet. 1991;38:283–7. https://doi.org/10.1002/ajmg.1320380223

    Article  CAS  PubMed  Google Scholar 

  57. Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1996;50:83–107. https://doi.org/10.1016/s0301-0082(96)00021-4

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M. c-fos regulates neuronal excitability and survival. Nat Genet. 2002;30:416–20. https://doi.org/10.1038/ng859

    Article  CAS  PubMed  Google Scholar 

  59. Hagerman R, Au J, Hagerman P. FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord. 2011;3:211–24. https://doi.org/10.1007/s11689-011-9084-5

    Article  PubMed  PubMed Central  Google Scholar 

  60. Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, et al. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun. 2019;10:4813. https://doi.org/10.1038/s41467-019-11891-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 2008;14:926–39. https://doi.org/10.1016/j.devcel.2008.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex. 2000;10:1038–44. https://doi.org/10.1093/cercor/10.10.1038

    Article  CAS  PubMed  Google Scholar 

  63. Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, et al. Potential Involvement of Impaired BKCa Channel Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by Unfamiliar Environment in a Mouse Model of fragile X Syndrome. Neuropsychopharmacology. 2018;43:492–502. https://doi.org/10.1038/npp.2017.149

    Article  CAS  PubMed  Google Scholar 

  64. Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM. Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharm Exp Ther. 2001;296:683–9.

    CAS  Google Scholar 

  65. Deng PY, Carlin D, Oh YM, Myrick LK, Warren ST, Cavalli V, et al. Voltage-independent SK-channel dysfunction causes neuronal hyperexcitability in the hippocampus of Fmr1 knock-out mice. J Neurosci. 2019;39:28–43. https://doi.org/10.1523/JNEUROSCI.1593-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Biag HMB, Potter LA, Wilkins V, Afzal S, Rosvall A, Salcedo-Arellano MJ, et al. Metformin treatment in young children with fragile X syndrome. Mol Genet Genom Med. 2019;7:e956. https://doi.org/10.1002/mgg3.956

    Article  Google Scholar 

  67. Polito V, Liknaitzky P. The emerging science of microdosing: A systematic review of research on low dose psychedelics (1955-2021) and recommendations for the field. Neurosci Biobehav Rev. 2022;139:104706. https://doi.org/10.1016/j.neubiorev.2022.104706

    Article  PubMed  Google Scholar 

  68. Griguoli M, Sgritta M, Cherubini E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol. 2016;594:3489–500. https://doi.org/10.1113/JP271841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Portera-Cailliau C. Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity? Neuroscientist. 2012;18:28–44. https://doi.org/10.1177/1073858410395322

    Article  CAS  PubMed  Google Scholar 

  70. Gomez R, Maglio LE, Gonzalez-Hernandez AJ, Rivero-Perez B, Bartolome-Martin D, Giraldez T. NMDA receptor-BK channel coupling regulates synaptic plasticity in the barrel cortex. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2107026118

  71. Matzkin ME, Lauf S, Spinnler K, Rossi SP, Kohn FM, Kunz L, et al. The Ca2+-activated, large conductance K+-channel (BKCa) is a player in the LH/hCG signaling cascade in testicular Leydig cells. Mol Cell Endocrinol. 2013;367:41–9. https://doi.org/10.1016/j.mce.2012.12.015

    Article  CAS  PubMed  Google Scholar 

  72. Saria A, Fischer HS, Humpel C, Pfattner A, Schatz DS, Schuligoi R. Margatoxin and iberiotoxin, two selective potassium channel inhibitors, induce c-fos like protein and mRNA in rat organotypic dorsal striatal slices. Amino Acids. 2000;19:23–31. https://doi.org/10.1007/s007260070030

    Article  CAS  PubMed  Google Scholar 

  73. Waller JA, Tamm JA, Abdourahman A, Pehrson AL, Li Y, Cajina M, et al. Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers. Eur Neuropsychopharmacol. 2017;27:192–203. https://doi.org/10.1016/j.euroneuro.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  74. Waller JA, Nygaard SH, Li Y, du Jardin KG, Tamm JA, Abdourahman A, et al. Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents. BMC Neurosci. 2017;18:56. https://doi.org/10.1186/s12868-017-0376-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Abdourahman A, Tamm JA, Pehrson AL, Sanchez C, Gulinello M. Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharm Biochem Behav. 2015;135:70–82. https://doi.org/10.1016/j.pbb.2015.05.013

    Article  CAS  Google Scholar 

  76. Lauterborn JC. Stress induced changes in cortical and hypothalamic c-fos expression are altered in fragile X mutant mice. Brain Res Mol Brain Res. 2004;131:101–9. https://doi.org/10.1016/j.molbrainres.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  77. Krueger DD, Osterweil EK, Chen SP, Tye LD, Bear MF. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 2011;108:2587–92. https://doi.org/10.1073/pnas.1013855108

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rogers TD, Anacker AMJ, Kerr TM, Forsberg CG, Wang J, Zhang B, et al. Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome. Mol autism. 2017;8:30. https://doi.org/10.1186/s13229-017-0148-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Errijgers V, Fransen E, D’Hooge R, De Deyn PP, Kooy RF. Effect of genetic background on acoustic startle response in fragile X knockout mice. Genet Res. 2008;90:341–5.

    Article  CAS  Google Scholar 

  80. Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, et al. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res. 2011;4:40–56.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Asanuma M, Ogawa N. Pitfalls in assessment of c-fos mRNA expression in the brain: effects of animal handling. Rev Neurosci. 1994;5:171–8. https://doi.org/10.1515/revneuro.1994.5.2.171

    Article  CAS  PubMed  Google Scholar 

  82. Jensen BS. BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev. 2002;8:353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol. 2019;151:1173–89. https://doi.org/10.1085/jgp.201912457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21. https://doi.org/10.1016/j.cell.2013.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bailey DB Jr, Hatton DD, Skinner M, Mesibov G. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord. 2001;31:165–74.

    Article  PubMed  Google Scholar 

  86. Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord. 1998;28:499–508.

    Article  PubMed  Google Scholar 

  87. Brock M, Hatton D. Distinguishing features of autism in boys with fragile X syndrome. J Intellect Disabil Res. 2010;54:894–905.

  88. Rogers SJ, Wehner DE, Hagerman R. The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr. 2001;22:409–17.

    Article  CAS  PubMed  Google Scholar 

  89. Gross C, Bassell GJ. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110beta-selective inhibitor. Mol Med. 2012;18:336–45. https://doi.org/10.2119/molmed.2011.00363

    Article  CAS  PubMed  Google Scholar 

  90. Gross C, Nakamoto M, Yao X, Chan CB, Yim SY, Ye K, et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci. 2010;30:10624–38. https://doi.org/10.1523/JNEUROSCI.0402-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoeffer CA, Sanchez E, Hagerman RJ, Mu Y, Nguyen DV, Wong H, et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012;11:332–41. https://doi.org/10.1111/j.1601-183X.2012.00768.x

    Article  CAS  PubMed  Google Scholar 

  92. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci. 2010;30:694–702. https://doi.org/10.1523/JNEUROSCI.3696-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song C, Broadie K. Dysregulation of BMP, Wnt, and insulin signaling in fragile X syndrome. Front Cell Dev Biol. 2022;10:934662. https://doi.org/10.3389/fcell.2022.934662

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang X, Snape M, Klann E, Stone JG, Singh A, Petersen RB, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121:672–9. https://doi.org/10.1111/j.1471-4159.2012.07722.x

    Article  CAS  PubMed  Google Scholar 

  95. Casingal CR, Kikkawa T, Inada H, Sasaki Y, Osumi N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/beta-catenin, and mTOR signaling during corticogenesis. Mol Brain. 2020;13:167. https://doi.org/10.1186/s13041-020-00706-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pedini G, Buccarelli M, Bianchi F, Pacini L, Cencelli G, D’Alessandris QG, et al. FMRP modulates the Wnt signalling pathway in glioblastoma. Cell Death Dis. 2022;13:719. https://doi.org/10.1038/s41419-022-05019-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sears JC, Choi WJ, Broadie K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol Dis. 2019;127:53–64. https://doi.org/10.1016/j.nbd.2019.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bollinger WL, Sial N, Dawson-Scully K. BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurogenet. 2018;32:246–55. https://doi.org/10.1080/01677063.2018.1500571

    Article  CAS  PubMed  Google Scholar 

  99. Mitrokhin MV, Kalsin V, Kamkina O, Babkina I, Zotov A, Troitskiy VA, et al. Participation of PKG and PKA-related pathways in the IFN-gamma induced modulation of the BK(Ca) channel activity in human cardiac fibroblasts. J Pharm Sci. 2019;141:25–31. https://doi.org/10.1016/j.jphs.2019.08.006

    Article  CAS  Google Scholar 

  100. Sansom SC, Ma R, Carmines PK, Hall DA. Regulation of Ca(2+)-activated K(+) channels by multifunctional Ca(2+)/calmodulin-dependent protein kinase. Am J Physiol Ren Physiol. 2000;279:F283–8. https://doi.org/10.1152/ajprenal.2000.279.2.F283

    Article  CAS  Google Scholar 

  101. Schubert R, Nelson MT. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharm Sci. 2001;22:505–12. https://doi.org/10.1016/s0165-6147(00)01775-2

    Article  CAS  PubMed  Google Scholar 

  102. Wang F, Chen Q, Huang G, Guo X, Li N, Li Y, et al. BKCa participates in E2 inducing endometrial adenocarcinoma by activating MEK/ERK pathway. BMC Cancer. 2018;18:1128. https://doi.org/10.1186/s12885-018-5027-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang Y, Tao J, Wang M, Yang L, Ning F, Xin H, et al. Mechanism of regulation of big-conductance Ca(2+)-activated K(+) channels by mTOR complex 2 in podocytes. Front Physiol. 2019;10:167 https://doi.org/10.3389/fphys.2019.00167

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhou X, Wulfsen I, Korth M, McClafferty H, Lukowski R, Shipston MJ, et al. Palmitoylation and membrane association of the stress axis regulated insert (STREX) controls BK channel regulation by protein kinase C. J Biol Chem. 2012;287:32161–71. https://doi.org/10.1074/jbc.M112.386359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen LY, Rex CS, Babayan AH, Kramar EA, Lynch G, Gall CM, et al. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci. 2010;30:10977–84. https://doi.org/10.1523/JNEUROSCI.1077-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIalpha and hyperphosphorylation of homer mediate circuit dysfunction in a fragile X syndrome mouse model. Cell Rep. 2015;13:2297–311. https://doi.org/10.1016/j.celrep.2015.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang A, Wang L, Lu JYD, Freeman A, Campbell C, Su P, et al. Sex differences in dopamine receptor signaling in Fmr1 knockout mice: a pilot study. Brain Sci. 2021;11. https://doi.org/10.3390/brainsci11111398

  108. Mok-Lin E, Ascano M Jr, Serganov A, Rosenwaks Z, Tuschl T, Williams Z. Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci Rep. 2018;8:588 https://doi.org/10.1038/s41598-017-18598-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sawicka K, Pyronneau A, Chao M, Bennett MV, Zukin RS. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc Natl Acad Sci USA. 2016;113:E6290–E7. https://doi.org/10.1073/pnas.1610812113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Morgan JI, Curran T. Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium. 1988;9:303–11. https://doi.org/10.1016/0143-4160(88)90011-5

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalez-Perez V, Lingle CJ. Regulation of BK channels by beta and gamma subunits. Annu Rev Physiol. 2019;81:113–37. https://doi.org/10.1146/annurev-physiol-022516-034038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blomer LA, Giacalone E, Abbas F, Filipis L, Tegolo D, Migliore M, et al. Kinetics and functional consequences of BK channels activation by N-type Ca(2+) channels in the dendrite of mouse neocortical layer-5 pyramidal neurons. Front Cell Neurosci. 2024;18:1353895. https://doi.org/10.3389/fncel.2024.1353895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Filipis L, Blomer LA, Montnach J, Loussouarn G, De Waard M, Canepari M. Nav1.2 and BK channel interaction shapes the action potential in the axon initial segment. J Physiol. 2023;601:1957–79. https://doi.org/10.1113/JP283801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Delphine Gonzales and the genotyping facility of Neurocentre Magendie (PUMA), funded by Inserm and LabEX BRAIN ANR-10-LABEX-43, for animal genotyping. The authors also thank Dr Txomin Lalanne and Dr Lauriane Beliez from Ephyx Neuroscience for their technical assistance with electrophysiological recordings. We thank Valeria Petroni for the assistance in animal testing, Elodie Poinama for animal care, Marie-Laure Rousseau, and Thierry Lafon for administrative and technical support.

Funding

This research was funded by FONDATION POUR L’AUDITION, grant number FPA-RD-2020-8, to SP. SP and CF received additional financial support from “Association Autour de Williams” and “Federation Williams France”, as well as from CNRS and Bordeaux University. BB received financial support from the French government in the framework of the University of Bordeaux’s IdEx “Investments for the Future” program (GPR BRAIN_2030) and from the “Agence Nationale pour la Recherche” (ANR-23-CE37-0013-02, project “Thalagram”).

Author information

Authors and Affiliations

Authors

Contributions

Experimental activity, data collection, and analysis: CF, MPL, VL, MMM, ST, BU, EC, SSB, and SP. Study design: EL, BB, and SP. Project supervision: SP. Manuscript writing: CF, BB, and SP. All authors have reviewed and approved the manuscript.

Corresponding author

Correspondence to Susanna Pietropaolo.

Ethics declarations

Competing interests

VL, EL, and SP are inventors on the patent: “Methods of treatment and/or prevention of disorders and symptoms related to BKCa and/or SK channelopathies” (N°. EP20775228.8 and N°. US17760612) owned by CNRS. The remaining authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraguto, C., Piquemal-Lagoueillat, M., Lemaire, V. et al. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01956-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01956-6

Search

Quick links