Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 13 print issues and online access
$259.00 per year
only $19.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All original data are available upon request to the corresponding author.
References
Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817–22.
Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2012;7:219–45.
Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ. Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA. 2001;98:7101–6.
Tranfaglia MR. The psychiatric presentation of fragile X: evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev Neurosci. 2011;33:337–48.
Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2022;19:248–62. https://doi.org/10.1007/s13311-022-01183-1
Johnson D, Clark C, Hagerman R. Targeted treatments for fragile X syndrome. Adv Neurobiol. 2023;30:225–53. https://doi.org/10.1007/978-3-031-21054-9_10
Protic D, Salcedo-Arellano MJ, Dy JB, Potter LA, Hagerman RJ. New targeted treatments for fragile X syndrome. Curr Pediatr Rev. 2019;15:251–8. https://doi.org/10.2174/1573396315666190625110748
Wang LW, Berry-Kravis E, Hagerman RJ. Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics. 2010;7:264–74.
Wen TH, Binder DK, Ethell IM, Razak KA. The perineuronal ‘safety’ net? Perineuronal net abnormalities in neurological disorders. Front Mol Neurosci. 2018;11:270 https://doi.org/10.3389/fnmol.2018.00270
Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23:674–7. https://doi.org/10.1038/nm.4335
Gkogkas CG, Khoutorsky A, Cao R, Jafarnejad SM, Prager-Khoutorsky M, Giannakas N, et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 2014;9:1742–55. https://doi.org/10.1016/j.celrep.2014.10.064
Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome. Front Behav Neurosci. 2019;13:141. https://doi.org/10.3389/fnbeh.2019.00141
Olmos-Serrano JL, Corbin JG, Burns MP. The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev Neurosci. 2011;33:395–403.
Wafford KA, Ebert B. Gaboxadol-a new awakening in sleep. Curr Opin Pharm. 2006;6:30–6. https://doi.org/10.1016/j.coph.2005.10.004
Bartholini G. GABA receptor agonists: pharmacological spectrum and therapeutic actions. Med Res Rev. 1985;5:55–75. https://doi.org/10.1002/med.2610050103
N’Gouemo P. BKCa channel dysfunction in neurological diseases. Front Physiol. 2014;5:373. https://doi.org/10.3389/fphys.2014.00373
Kshatri AS, Gonzalez-Hernandez A, Giraldez T. Physiological roles and therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. https://doi.org/10.3389/fnmol.2018.00258
Ancaten-Gonzalez C, Segura I, Alvarado-Sanchez R, Chavez AE, Latorre R. Ca(2+)- and voltage-activated K(+) (BK) channels in the nervous system: one gene, a myriad of physiological functions. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24043407
Orfali R, Albanyan N. Ca(2+)-sensitive potassium channels. Molecules. 2023;28. https://doi.org/10.3390/molecules28020885
Echeverria F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernandez M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K(+) (BK) channel in health and disease. Front Pharm. 2024;15:1373507 https://doi.org/10.3389/fphar.2024.1373507
Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol. 2016;594:83–97. https://doi.org/10.1113/JP271031
Deng PY, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron. 2013;77:696–711. https://doi.org/10.1016/j.neuron.2012.12.018
Kshatri A, Cerrada A, Gimeno R, Bartolome-Martin D, Rojas P, Giraldez T. Differential regulation of BK channels by fragile X mental retardation protein. J Gen Physiol. 2020;152. https://doi.org/10.1085/jgp.201912502
Hebert B, Pietropaolo S, Meme S, Laudier B, Laugeray A, Doisne N, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis. 2014;9:124.
Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci. 2014;17:1701–9. https://doi.org/10.1038/nn.3864
Myrick LK, Deng PY, Hashimoto H, Oh YM, Cho Y, Poidevin MJ, et al. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc Natl Acad Sci USA. 2015;112:949–56. https://doi.org/10.1073/pnas.1423094112
Wang ZW. Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol. 2008;38:153–66. https://doi.org/10.1007/s12035-008-8039-7
van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol. 2011;105:1651–9. https://doi.org/10.1152/jn.00058.2011
Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61. https://doi.org/10.1016/j.cell.2011.06.013
Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, et al. Potential involvement of impaired BK(Ca) channel function in sensory defensiveness and some behavioral disturbances induced by unfamiliar environment in a mouse model of fragile X syndrome. Neuropsychopharmacology. 2018;43:492–502. https://doi.org/10.1038/npp.2017.149
Hohmann N, Blank A, Burhenne J, Suzuki Y, Mikus G, Haefeli WE. Simultaneous phenotyping of CYP2E1 and CYP3A using oral chlorzoxazone and midazolam microdoses. Br J Clin Pharm. 2019;85:2310–20. https://doi.org/10.1111/bcp.14040
Martindale W. The extra pharmacopoeia. 30th ed. Amer Pharmaceutical Assn; London, UK; 1993.
Ferraguto C, Bouleau Y, Peineau T, Dulon D, Pietropaolo S. Hyperacusis in the adult Fmr1-KO mouse model of fragile X syndrome: the therapeutic relevance of cochlear alterations and BKCa channels. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms241411863
Deng L, Li H, Su X, Zhang Y, Xu H, Fan L, et al. Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death Dis. 2020;11:158 https://doi.org/10.1038/s41419-020-2357-8
Bai Y, Ma X. Chlorzoxazone exhibits neuroprotection against Alzheimer’s disease by attenuating neuroinflammation and neurodegeneration in vitro and in vivo. Int Immunopharmacol. 2020;88:106790 https://doi.org/10.1016/j.intimp.2020.106790
Egorova PA, Gavrilova AV, Bezprozvanny IB. Ataxic symptoms in huntington’s disease transgenic mouse model are alleviated by chlorzoxazone. Front Neurosci. 2020;14:279. https://doi.org/10.3389/fnins.2020.00279
Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19:1340–53. https://doi.org/10.1016/j.chembiol.2012.07.013
Marinina KS, Bezprozvanny IB, Egorova PA. A chlorzoxazone-folic acid combination improves cognitive affective decline in SCA2-58Q mice. Sci Rep. 2023;13:12588 https://doi.org/10.1038/s41598-023-39331-y
Egorova PA, Bezprozvanny IB. Electrophysiological studies support utility of positive modulators of SK channels for the treatment of spinocerebellar ataxia type 2. Cerebellum. 2022;21:742–9. https://doi.org/10.1007/s12311-021-01349-1
Liu YC, Lo YK, Wu SN. Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res. 2003;959:86–97. https://doi.org/10.1016/s0006-8993(02)03730-7
Jung YH, Hong SI, Ma SX, Hwang JY, Kim JS, Lee JH, et al. Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther. 2014;22:453–9. https://doi.org/10.4062/biomolther.2014.058
Oddi D, Crusio WE, D’Amato FR, Pietropaolo S. Monogenic mouse models of social dysfunction: implications for autism. Behav Brain Res. 2013;251:75–84.
Pietropaolo S, Guilleminot A, Martin B, D’Amato FR, Crusio WE. Genetic-background modulation of core and variable autistic-like symptoms in FMR1 knock-out mice. PLoS ONE. 2011;6:e17073.
Pietropaolo S, Goubran MG, Joffre C, Aubert A, Lemaire-Mayo V, Crusio WE, et al. Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice. Psychoneuroendocrinology. 2014;49:119–29. https://doi.org/10.1016/j.psyneuen.2014.07.002
Pietropaolo S, Subashi E. Mouse models of fragile X syndrome. In: Pietropaolo S, Sluyter F, Crusio WE, editors. Behavioral genetics of the mouse. Cambridge: Cambridge University Press; 2014. pp. 146–63.
Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L, Zu T, Hoogeveen-Westerveld M, Severijnen L, et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis. 2006;21:549–55.
Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP. A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav. 2004;3:337–59.
Gaudissard J, Ginger M, Premoli M, Memo M, Frick A, Pietropaolo S. Behavioral abnormalities in the Fmr1-KO2 mouse model of fragile X syndrome: the relevance of early life phases. Autism Res. 2017;10:1584–96. https://doi.org/10.1002/aur.1814
Gauducheau M, Lemaire-Mayo V, D’Amato FR, Oddi D, Crusio WE, Pietropaolo S. Age-specific autistic-like behaviors in heterozygous Fmr1-KO female mice. Autism Res. 2017;10:1067–78. https://doi.org/10.1002/aur.1743
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: a systematic review and meta-analysis of the fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev. 2022;139:104722 https://doi.org/10.1016/j.neubiorev.2022.104722
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412 https://doi.org/10.1371/journal.pbio.1000412
Oddi D, Subashi E, Middei S, Bellocchio L, Lemaire-Mayo V, Guzman M, et al. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome. Neuropsychopharmacology. 2015;40:1113–22. https://doi.org/10.1038/npp.2014.291
Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci. 2022;16:917183. https://doi.org/10.3389/fncel.2022.917183
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, et al. Early administration of the phytocannabinoid cannabidivarin prevents the neurobehavioral abnormalities associated with the Fmr1-KO mouse model of fragile X syndrome. Cells. 2023;12. https://doi.org/10.3390/cells12151927
De Arce MA, Kearns A. The fragile X syndrome: the patients and their chromosomes. J Med Genet. 1984;21:84–91. https://doi.org/10.1136/jmg.21.2.84
Hagerman RJ, Amiri K, Cronister A. Fragile X checklist. Am J Med Genet. 1991;38:283–7. https://doi.org/10.1002/ajmg.1320380223
Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1996;50:83–107. https://doi.org/10.1016/s0301-0082(96)00021-4
Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M. c-fos regulates neuronal excitability and survival. Nat Genet. 2002;30:416–20. https://doi.org/10.1038/ng859
Hagerman R, Au J, Hagerman P. FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord. 2011;3:211–24. https://doi.org/10.1007/s11689-011-9084-5
Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, et al. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun. 2019;10:4813. https://doi.org/10.1038/s41467-019-11891-6
Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 2008;14:926–39. https://doi.org/10.1016/j.devcel.2008.04.003
Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex. 2000;10:1038–44. https://doi.org/10.1093/cercor/10.10.1038
Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, et al. Potential Involvement of Impaired BKCa Channel Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by Unfamiliar Environment in a Mouse Model of fragile X Syndrome. Neuropsychopharmacology. 2018;43:492–502. https://doi.org/10.1038/npp.2017.149
Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM. Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharm Exp Ther. 2001;296:683–9.
Deng PY, Carlin D, Oh YM, Myrick LK, Warren ST, Cavalli V, et al. Voltage-independent SK-channel dysfunction causes neuronal hyperexcitability in the hippocampus of Fmr1 knock-out mice. J Neurosci. 2019;39:28–43. https://doi.org/10.1523/JNEUROSCI.1593-18.2018
Biag HMB, Potter LA, Wilkins V, Afzal S, Rosvall A, Salcedo-Arellano MJ, et al. Metformin treatment in young children with fragile X syndrome. Mol Genet Genom Med. 2019;7:e956. https://doi.org/10.1002/mgg3.956
Polito V, Liknaitzky P. The emerging science of microdosing: A systematic review of research on low dose psychedelics (1955-2021) and recommendations for the field. Neurosci Biobehav Rev. 2022;139:104706. https://doi.org/10.1016/j.neubiorev.2022.104706
Griguoli M, Sgritta M, Cherubini E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol. 2016;594:3489–500. https://doi.org/10.1113/JP271841
Portera-Cailliau C. Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity? Neuroscientist. 2012;18:28–44. https://doi.org/10.1177/1073858410395322
Gomez R, Maglio LE, Gonzalez-Hernandez AJ, Rivero-Perez B, Bartolome-Martin D, Giraldez T. NMDA receptor-BK channel coupling regulates synaptic plasticity in the barrel cortex. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2107026118
Matzkin ME, Lauf S, Spinnler K, Rossi SP, Kohn FM, Kunz L, et al. The Ca2+-activated, large conductance K+-channel (BKCa) is a player in the LH/hCG signaling cascade in testicular Leydig cells. Mol Cell Endocrinol. 2013;367:41–9. https://doi.org/10.1016/j.mce.2012.12.015
Saria A, Fischer HS, Humpel C, Pfattner A, Schatz DS, Schuligoi R. Margatoxin and iberiotoxin, two selective potassium channel inhibitors, induce c-fos like protein and mRNA in rat organotypic dorsal striatal slices. Amino Acids. 2000;19:23–31. https://doi.org/10.1007/s007260070030
Waller JA, Tamm JA, Abdourahman A, Pehrson AL, Li Y, Cajina M, et al. Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers. Eur Neuropsychopharmacol. 2017;27:192–203. https://doi.org/10.1016/j.euroneuro.2016.11.014
Waller JA, Nygaard SH, Li Y, du Jardin KG, Tamm JA, Abdourahman A, et al. Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents. BMC Neurosci. 2017;18:56. https://doi.org/10.1186/s12868-017-0376-x
Li Y, Abdourahman A, Tamm JA, Pehrson AL, Sanchez C, Gulinello M. Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharm Biochem Behav. 2015;135:70–82. https://doi.org/10.1016/j.pbb.2015.05.013
Lauterborn JC. Stress induced changes in cortical and hypothalamic c-fos expression are altered in fragile X mutant mice. Brain Res Mol Brain Res. 2004;131:101–9. https://doi.org/10.1016/j.molbrainres.2004.08.014
Krueger DD, Osterweil EK, Chen SP, Tye LD, Bear MF. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 2011;108:2587–92. https://doi.org/10.1073/pnas.1013855108
Rogers TD, Anacker AMJ, Kerr TM, Forsberg CG, Wang J, Zhang B, et al. Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome. Mol autism. 2017;8:30. https://doi.org/10.1186/s13229-017-0148-6
Errijgers V, Fransen E, D’Hooge R, De Deyn PP, Kooy RF. Effect of genetic background on acoustic startle response in fragile X knockout mice. Genet Res. 2008;90:341–5.
Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, et al. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res. 2011;4:40–56.
Asanuma M, Ogawa N. Pitfalls in assessment of c-fos mRNA expression in the brain: effects of animal handling. Rev Neurosci. 1994;5:171–8. https://doi.org/10.1515/revneuro.1994.5.2.171
Jensen BS. BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev. 2002;8:353–60.
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol. 2019;151:1173–89. https://doi.org/10.1085/jgp.201912457
Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21. https://doi.org/10.1016/j.cell.2013.10.031
Bailey DB Jr, Hatton DD, Skinner M, Mesibov G. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord. 2001;31:165–74.
Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord. 1998;28:499–508.
Brock M, Hatton D. Distinguishing features of autism in boys with fragile X syndrome. J Intellect Disabil Res. 2010;54:894–905.
Rogers SJ, Wehner DE, Hagerman R. The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr. 2001;22:409–17.
Gross C, Bassell GJ. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110beta-selective inhibitor. Mol Med. 2012;18:336–45. https://doi.org/10.2119/molmed.2011.00363
Gross C, Nakamoto M, Yao X, Chan CB, Yim SY, Ye K, et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci. 2010;30:10624–38. https://doi.org/10.1523/JNEUROSCI.0402-10.2010
Hoeffer CA, Sanchez E, Hagerman RJ, Mu Y, Nguyen DV, Wong H, et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012;11:332–41. https://doi.org/10.1111/j.1601-183X.2012.00768.x
Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci. 2010;30:694–702. https://doi.org/10.1523/JNEUROSCI.3696-09.2010
Song C, Broadie K. Dysregulation of BMP, Wnt, and insulin signaling in fragile X syndrome. Front Cell Dev Biol. 2022;10:934662. https://doi.org/10.3389/fcell.2022.934662
Wang X, Snape M, Klann E, Stone JG, Singh A, Petersen RB, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121:672–9. https://doi.org/10.1111/j.1471-4159.2012.07722.x
Casingal CR, Kikkawa T, Inada H, Sasaki Y, Osumi N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/beta-catenin, and mTOR signaling during corticogenesis. Mol Brain. 2020;13:167. https://doi.org/10.1186/s13041-020-00706-1
Pedini G, Buccarelli M, Bianchi F, Pacini L, Cencelli G, D’Alessandris QG, et al. FMRP modulates the Wnt signalling pathway in glioblastoma. Cell Death Dis. 2022;13:719. https://doi.org/10.1038/s41419-022-05019-w
Sears JC, Choi WJ, Broadie K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol Dis. 2019;127:53–64. https://doi.org/10.1016/j.nbd.2019.02.004
Bollinger WL, Sial N, Dawson-Scully K. BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurogenet. 2018;32:246–55. https://doi.org/10.1080/01677063.2018.1500571
Mitrokhin MV, Kalsin V, Kamkina O, Babkina I, Zotov A, Troitskiy VA, et al. Participation of PKG and PKA-related pathways in the IFN-gamma induced modulation of the BK(Ca) channel activity in human cardiac fibroblasts. J Pharm Sci. 2019;141:25–31. https://doi.org/10.1016/j.jphs.2019.08.006
Sansom SC, Ma R, Carmines PK, Hall DA. Regulation of Ca(2+)-activated K(+) channels by multifunctional Ca(2+)/calmodulin-dependent protein kinase. Am J Physiol Ren Physiol. 2000;279:F283–8. https://doi.org/10.1152/ajprenal.2000.279.2.F283
Schubert R, Nelson MT. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharm Sci. 2001;22:505–12. https://doi.org/10.1016/s0165-6147(00)01775-2
Wang F, Chen Q, Huang G, Guo X, Li N, Li Y, et al. BKCa participates in E2 inducing endometrial adenocarcinoma by activating MEK/ERK pathway. BMC Cancer. 2018;18:1128. https://doi.org/10.1186/s12885-018-5027-9
Wang Y, Tao J, Wang M, Yang L, Ning F, Xin H, et al. Mechanism of regulation of big-conductance Ca(2+)-activated K(+) channels by mTOR complex 2 in podocytes. Front Physiol. 2019;10:167 https://doi.org/10.3389/fphys.2019.00167
Zhou X, Wulfsen I, Korth M, McClafferty H, Lukowski R, Shipston MJ, et al. Palmitoylation and membrane association of the stress axis regulated insert (STREX) controls BK channel regulation by protein kinase C. J Biol Chem. 2012;287:32161–71. https://doi.org/10.1074/jbc.M112.386359
Chen LY, Rex CS, Babayan AH, Kramar EA, Lynch G, Gall CM, et al. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci. 2010;30:10977–84. https://doi.org/10.1523/JNEUROSCI.1077-10.2010
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIalpha and hyperphosphorylation of homer mediate circuit dysfunction in a fragile X syndrome mouse model. Cell Rep. 2015;13:2297–311. https://doi.org/10.1016/j.celrep.2015.11.013
Jiang A, Wang L, Lu JYD, Freeman A, Campbell C, Su P, et al. Sex differences in dopamine receptor signaling in Fmr1 knockout mice: a pilot study. Brain Sci. 2021;11. https://doi.org/10.3390/brainsci11111398
Mok-Lin E, Ascano M Jr, Serganov A, Rosenwaks Z, Tuschl T, Williams Z. Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci Rep. 2018;8:588 https://doi.org/10.1038/s41598-017-18598-y
Sawicka K, Pyronneau A, Chao M, Bennett MV, Zukin RS. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc Natl Acad Sci USA. 2016;113:E6290–E7. https://doi.org/10.1073/pnas.1610812113
Morgan JI, Curran T. Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium. 1988;9:303–11. https://doi.org/10.1016/0143-4160(88)90011-5
Gonzalez-Perez V, Lingle CJ. Regulation of BK channels by beta and gamma subunits. Annu Rev Physiol. 2019;81:113–37. https://doi.org/10.1146/annurev-physiol-022516-034038
Blomer LA, Giacalone E, Abbas F, Filipis L, Tegolo D, Migliore M, et al. Kinetics and functional consequences of BK channels activation by N-type Ca(2+) channels in the dendrite of mouse neocortical layer-5 pyramidal neurons. Front Cell Neurosci. 2024;18:1353895. https://doi.org/10.3389/fncel.2024.1353895
Filipis L, Blomer LA, Montnach J, Loussouarn G, De Waard M, Canepari M. Nav1.2 and BK channel interaction shapes the action potential in the axon initial segment. J Physiol. 2023;601:1957–79. https://doi.org/10.1113/JP283801
Acknowledgements
The authors thank Delphine Gonzales and the genotyping facility of Neurocentre Magendie (PUMA), funded by Inserm and LabEX BRAIN ANR-10-LABEX-43, for animal genotyping. The authors also thank Dr Txomin Lalanne and Dr Lauriane Beliez from Ephyx Neuroscience for their technical assistance with electrophysiological recordings. We thank Valeria Petroni for the assistance in animal testing, Elodie Poinama for animal care, Marie-Laure Rousseau, and Thierry Lafon for administrative and technical support.
Funding
This research was funded by FONDATION POUR L’AUDITION, grant number FPA-RD-2020-8, to SP. SP and CF received additional financial support from “Association Autour de Williams” and “Federation Williams France”, as well as from CNRS and Bordeaux University. BB received financial support from the French government in the framework of the University of Bordeaux’s IdEx “Investments for the Future” program (GPR BRAIN_2030) and from the “Agence Nationale pour la Recherche” (ANR-23-CE37-0013-02, project “Thalagram”).
Author information
Authors and Affiliations
Contributions
Experimental activity, data collection, and analysis: CF, MPL, VL, MMM, ST, BU, EC, SSB, and SP. Study design: EL, BB, and SP. Project supervision: SP. Manuscript writing: CF, BB, and SP. All authors have reviewed and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
VL, EL, and SP are inventors on the patent: “Methods of treatment and/or prevention of disorders and symptoms related to BKCa and/or SK channelopathies” (N°. EP20775228.8 and N°. US17760612) owned by CNRS. The remaining authors have nothing to disclose.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ferraguto, C., Piquemal-Lagoueillat, M., Lemaire, V. et al. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01956-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41386-024-01956-6