Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions

Abstract

Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance of plasticity to improved psychiatric care.
Fig. 2
Fig. 3: Schematic illustration of a plasticity marker validation design.

Similar content being viewed by others

References

  1. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    Article  CAS  PubMed  Google Scholar 

  2. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206:419–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takesian AE, Hensch TK Balancing Plasticity/Stanility Across Brain Development. In: Merzenich MM, Nahum M, Van Vleet TM, editors. Progress in Brain Research, 207, Elsevier; 2013. 3–34.

  4. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Dev. 1987;58:539–59.

    Article  CAS  PubMed  Google Scholar 

  5. Humphreys KL, Salo VC. Expectable environments in early life. Curr Opin Behav Sci. 2020;36:115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549–79.

    Article  CAS  PubMed  Google Scholar 

  7. Hübener M, Bonhoeffer T. Neuronal plasticity: beyond the critical period. Cell. 2014;159:727–37.

    Article  PubMed  Google Scholar 

  8. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5:97–107.

    Article  CAS  PubMed  Google Scholar 

  9. Chapman DP, Dube SR, Anda RF. Adverse childhood events as risk factors for negative mental health outcomes. Psychiatr Ann. 2007;37:359–64.

    Google Scholar 

  10. Luby JL, Barch D, Whalen D, Tillman R, Belden A. Association between early life adversity and risk for poor emotional and physical health in adolescence: a putative mechanistic neurodevelopmental pathway. JAMA Pediatr. 2017;171:1168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ford A, Ammar Z, Li L, Shultz S. Lateralization of major white matter tracts during infancy is time-varying and tract-specific. Cereb Cortex. 2023;33:10221–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lebel C, Treit S, Beaulieu C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed. 2019;32:e3778.

    Article  PubMed  Google Scholar 

  13. Church JA, Petersen SE, Schlaggar BL. The “Task B problem” and other considerations in developmental functional neuroimaging. Hum Brain Mapp. 2010;31:852–62.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Taylor MJ, Baldeweg T. Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Dev Sci. 2002;5:318–34.

    Article  Google Scholar 

  15. Garcia KE, Robinson EC, Alexopoulos D, Dierker DL, Glasser MF, Coalson TS, et al. Dynamic patterns of cortical expansion during folding of the preterm human brain. Proc Natl Acad Sci. 2018;115:3156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimony JS, Smyser CD, Wideman G, Alexopoulos D, Hill J, Harwell J, et al. Comparison of cortical folding measures for evaluation of developing human brain. NeuroImage. 2016;125:780–90.

    Article  PubMed  Google Scholar 

  17. McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL, et al. Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex. 2002;12:1237–43.

    Article  PubMed  Google Scholar 

  18. Kelly MP, Deadwyler SA. Experience-dependent regulation of the immediate-early gene arc differs across brain regions. J Neurosci. 2003;23:6443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tognini P, Napoli D, Pizzorusso T. Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Front Cell Neurosci. 2015;9:331.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature. 2006;441:979–83.

    Article  CAS  PubMed  Google Scholar 

  21. Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci. 2010;2:138.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999;2:352–7.

    Article  CAS  PubMed  Google Scholar 

  23. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647–58.

    Article  CAS  PubMed  Google Scholar 

  24. Cooke SF, Bear MF. Visual experience induces long-term potentiation in the primary visual cortex. J Neurosci. 2010;30:16304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster TC, Gagne J, Massicotte G. Mechanism of altered synaptic strength due to experience: relation to long-term potentiation. Brain Res. 1996;736:243–50.

    Article  CAS  PubMed  Google Scholar 

  26. Cooke SF, Bear MF. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philos Trans R Soc B Biol Sci. 2014;369:20130284.

    Article  Google Scholar 

  27. Frey U, Morris RGM. Synaptic tagging and long-term potentiation. Nature. 1997;385:533–6.

    Article  CAS  PubMed  Google Scholar 

  28. Abraham WC. How long will long-term potentiation last? Philos Trans R Soc Lond Ser B Biol Sci. 2003;358:735–44.

    Article  Google Scholar 

  29. Bliss TVP, Collingridge GL, Morris RGM, Reymann KG. Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum. 2018;24:A103–A120.

    Article  Google Scholar 

  30. Riccomagno MM, Kolodkin AL. Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol. 2015;31:779–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herrmann K, Shatz CJ. Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc Natl Acad Sci. 1995;92:11244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Catalano SM, Shatz CJ. Activity-dependent cortical target selection by thalamic axons. Science. 1998;281:559–62.

    Article  CAS  PubMed  Google Scholar 

  33. Sereno MI, McDonald CT, Allman JM. Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex. 1994;4:601–20.

    Article  CAS  PubMed  Google Scholar 

  34. Reale RA, Imig TJ. Tonotopic organization in auditory cortex of the cat. J Comp Neurol. 1980;192:265–91.

    Article  CAS  PubMed  Google Scholar 

  35. Harding-Forrester S, Feldman DE. Somatosensory maps. Handb Clin Neurol. 2018;151:73–102.

    Article  PubMed  Google Scholar 

  36. Silver MA, Kastner S. Topographic maps in human frontal and parietal cortex. Trends Cogn Sci. 2009;13:488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sliwa J, Freiwald WA. A dedicated network for social interaction processing in the primate brain. Science. 2017;356:745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nieder A, Freedman DJ, Miller EK. Representation of the quantity of visual items in the primate prefrontal cortex. Science. 2002;297:1708–11.

    Article  CAS  PubMed  Google Scholar 

  39. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291:312–6.

    Article  CAS  PubMed  Google Scholar 

  40. Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411:953–6.

    Article  CAS  PubMed  Google Scholar 

  41. Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003–17.

    Article  CAS  PubMed  Google Scholar 

  42. Erzurumlu RS, Gaspar P. Development and critical period plasticity of the barrel cortex. Eur J Neurosci. 2012;35:1540–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983;8:33–55.

    Article  CAS  PubMed  Google Scholar 

  44. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224:591–605.

    Article  CAS  PubMed  Google Scholar 

  45. Milliken GW, Plautz EJ, Nudo RJ. Distal forelimb representations in primary motor cortex are redistributed after forelimb restriction: a longitudinal study in adult squirrel monkeys. J Neurophysiol. 2013;109:1268–82.

    Article  CAS  PubMed  Google Scholar 

  46. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. Seeing faces is necessary for face-domain formation. Nat Neurosci. 2017;20:1404–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marler P, Mundinger P, Waser MS, Lutjen A. Effects of acoustical stimulation and deprivation on song development in red-winged blackbirds (Agelaius phoeniceus). Anim Behav. 1972;20:586–606.

    Article  CAS  PubMed  Google Scholar 

  48. Fox SE, Levitt P, Nelson CA. How the timing and quality of early experiences influence the development of brain architecture. Child Dev. 2010;81:28–40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Davis EP, McCormack K, Arora H, Sharpe D, Short AK, Bachevalier J, et al. Early life exposure to unpredictable parental sensory signals shapes cognitive development across three species. Front Behav Neurosci. 2022;16:960262.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol. 2015;66:173–96.

    Article  PubMed  Google Scholar 

  51. Flechsig P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet. 1901;158:1027–30.

    Article  Google Scholar 

  52. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    Article  CAS  PubMed  Google Scholar 

  53. Arcaro MJ, Schade PF, Livingstone MS. Universal mechanisms and the development of the face network: what you see is what you get. Annu Rev Vis Sci. 2019;5:341–72.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T. Development of the macaque face-patch system. Nat Commun. 2017;8:14897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron. 2021;109:2519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chattopadhyaya B, Cristo GD, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci. 2004;24:9598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000;404:183–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998;282:1504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katagiri H, Fagiolini M, Hensch TK. Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron. 2007;53:805–12.

    Article  CAS  PubMed  Google Scholar 

  60. Quast KB, Reh RK, Caiati MD, Kopell N, McCarthy MM, Hensch TK. Rapid synaptic and gamma rhythm signature of mouse critical period plasticity. Proc Natl Acad Sci. 2023;120:e2123182120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frye CG, MacLean JN. Spontaneous activations follow a common developmental course across primary sensory areas in mouse neocortex. J Neurophysiol. 2016;116:431–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20:451–65.

    Article  CAS  PubMed  Google Scholar 

  63. Akbik FV, Bhagat SM, Patel PR, Cafferty WBJ, Strittmatter SM. Anatomical plasticity of adult brain is titrated by nogo receptor 1. Neuron. 2013;77:859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Nardo AAD, et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012;32:9429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, et al. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 1999;842:15–29.

    Article  PubMed  Google Scholar 

  66. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–51.

    Article  CAS  PubMed  Google Scholar 

  67. Knudsen EI. Sensitive periods in the development of the brain and behavior. J Cogn Neurosci. 2004;16:1412–25.

    Article  PubMed  Google Scholar 

  68. Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 1983;10:639–65.

    Article  CAS  PubMed  Google Scholar 

  69. Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea A-E, Simpraga S, et al. Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep. 2020;10:9195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ahmad J, Ellis C, Leech R, Voytek B, Garces P, Jones E, et al. From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans. Transl Psychiatry. 2022;12:1–12.

    Article  Google Scholar 

  71. Tamaki M, Wang Z, Barnes-Diana T, Guo D, Berard AV, Walsh E, et al. Complementary contributions of non-REM and REM sleep to visual learning. Nat Neurosci. 2020;23:1150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8:45–56.

    Article  CAS  PubMed  Google Scholar 

  75. Chen G, Rasch MJ, Wang R, Zhang X. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period. Sci Rep. 2015;5:17847.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Galuske RAW, Munk MHJ, Singer W. Relation between gamma oscillations and neuronal plasticity in the visual cortex. Proc Natl Acad Sci. 2019;116:23317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Headley DB, Weinberger NM. Gamma-band activation predicts both associative memory and cortical plasticity. J Neurosci. 2011;31:12748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37:1269–83.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pöpplau JA, Schwarze T, Dorofeikova M, Pochinok I, Günther A, Marquardt A, et al. Reorganization of adolescent prefrontal cortex circuitry is required for mouse cognitive maturation. Neuron. 2024;112:421–40.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang Z, Singh B, Zhou X, Constantinidis C. Strong gamma frequency oscillations in the adolescent prefrontal cortex. J Neurosci. 2022;42:2917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, et al. Gamma oscillations in V1 are correlated with GABAA receptor density: a multi-modal MEG and Flumazenil-PET study. Sci Rep. 2015;5:16347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W. Neural synchrony and the development of cortical networks. Trends Cogn Sci. 2010;14:72–80.

    Article  PubMed  Google Scholar 

  83. Tierney A, Strait DL, O’Connell S, Kraus N. Developmental changes in resting gamma power from age three to adulthood. Clin Neurophysiol. 2013;124:1040–2.

    Article  PubMed  Google Scholar 

  84. McKeon SD, Calabro F, Thorpe RV, de la Fuente A, Foran W, Parr AC, et al. Age-related differences in transient gamma band activity during working memory maintenance through adolescence. NeuroImage. 2023;274:120112.

    Article  PubMed  Google Scholar 

  85. Ortiz-Mantilla S, Hämäläinen JA, Musacchia G, Benasich AA. Enhancement of gamma oscillations indicates preferential processing of native over foreign phonemic contrasts in infants. J Neurosci. 2013;33:18746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, et al. Critical period regulation across multiple timescales. Proc Natl Acad Sci USA. 2020;117:23242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guerra A, Suppa A, Bologna M, D’Onofrio V, Bianchini E, Brown P, et al. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation. Brain Stimul. 2018;11:734–42.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guerra A, Asci F, Zampogna A, D’Onofrio V, Berardelli A, Suppa A. The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol. 2021;132:1358–66.

    Article  PubMed  Google Scholar 

  89. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23:1655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tran TT, Rolle CE, Gazzaley A, Voytek B. Linked sources of neural noise contribute to age-related cognitive decline. J Cogn Neurosci. 2020;32:1813–22.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, et al. Age-related changes in 1/f neural electrophysiological noise. J Neurosci. 2015;35:13257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage. 2017;158:70–78.

    Article  PubMed  Google Scholar 

  93. Ostlund BD, Alperin BR, Drew T, Karalunas SL. Behavioral and cognitive correlates of the aperiodic (1/f-like) exponent of the EEG power spectrum in adolescents with and without ADHD. Dev Cogn Neurosci. 2021;48:100931.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chini M, Pfeffer T, Hanganu-Opatz I. An increase of inhibition drives the developmental decorrelation of neural activity. eLife. 2022;11:e78811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salvatore SV, Lambert PM, Benz A, Rensing NR, Wong M, Zorumski CF, et al. Periodic and aperiodic changes to cortical EEG in response to pharmacological manipulation. J Neurophysiol. 2024;131:529–40.

    Article  CAS  PubMed  Google Scholar 

  96. Schaworonkow N, Voytek B. Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Dev Cogn Neurosci. 2021;47:100895.

    Article  PubMed  Google Scholar 

  97. Hill AT, Clark GM, Bigelow FJ, Lum JAG, Enticott PG. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Dev Cogn Neurosci. 2022;54:101076.

    Article  PubMed  PubMed Central  Google Scholar 

  98. McSweeney M, Morales S, Valadez EA, Buzzell GA, Yoder L, Fifer WP, et al. Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood. NeuroImage. 2023;269:119925.

    Article  PubMed  Google Scholar 

  99. McSweeney M, Morales S, Valadez EA, Buzzell GA, Fox NA. Longitudinal age- and sex-related change in background aperiodic activity during early adolescence. Dev Cogn Neurosci. 2021;52:101035.

    Article  PubMed  PubMed Central  Google Scholar 

  100. He W, Donoghue T, Sowman PF, Seymour RA, Brock J, Crain S, et al. Co-increasing neuronal noise and beta power in the developing brain. bioRxiv. 2019. Available from: https://doi.org/10.1101/839258

  101. Sanders PJ, Thompson B, Corballis PM, Maslin M, Searchfield GD. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur J Neurosci. 2018;48:2084–97.

    Article  PubMed  Google Scholar 

  102. Cadwallader CJ, Steiniger J, Cooper PS, Zhou S-H, Hendrikse J, Sumner RL, et al. Acute exercise as a modifier of neocortical plasticity and aperiodic activity in the visual cortex. Sci Rep. 2023;13:7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. De Asis-Cruz J, Kapse K, Basu SK, Said M, Scheinost D, Murnick J, et al. Functional brain connectivity in ex utero premature infants compared to in utero fetuses. NeuroImage. 2020;219:117043.

    Article  PubMed  Google Scholar 

  104. Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, et al. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front Integr Neurosci. 2023;17:1149159.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7.

    Article  CAS  PubMed  Google Scholar 

  106. Golshani P, Gonçalves JT, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C. Internally mediated developmental desynchronization of neocortical network activity. J Neurosci. 2009;29:10890–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, et al. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nat Methods. 2020;17:1262–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci. 2012;32:1395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shmuel A, Leopold DA. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Hum Brain Mapp. 2008;29:751–61.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fair DA, Yeo BTT. Precision neuroimaging opens a new chapter of neuroplasticity experimentation. Neuron. 2020;107:401–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor–association axis of cortical neurodevelopment. Trends Neurosci. 2023;46:847–62.

    Article  CAS  PubMed  Google Scholar 

  112. Sydnor VJ, Larsen B, Seidlitz J, Adebimpe A, Alexander-Bloch AF, Bassett DS, et al. Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth. Nat Neurosci. 2023;26:638–49.

  113. Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91.

    Article  Google Scholar 

  114. Laumann TO, Snyder AZ. Brain activity is not only for thinking. Curr Opin Behav Sci. 2021;40:130–6.

    Article  Google Scholar 

  115. Markicevic M, Fulcher BD, Lewis C, Helmchen F, Rudin M, Zerbi V, et al. Cortical excitation:inhibition imbalance causes abnormal brain network dynamics as observed in neurodevelopmental disorders. Cereb Cortex. 2020;30:4922–37.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron. 2021;109:2820–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Larsen B, Cui Z, Adebimpe A, Pines A, Alexander-Bloch A, Bertolero M, et al. A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. Sci Adv. 2022;8:eabj8750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao R, Guo X, Wang Y, Song Y, Su Q, Sun H, et al. Functional MRI evidence for primary motor cortex plasticity contributes to the disease’s severity and prognosis of cervical spondylotic myelopathy patients. Eur Radio. 2022;32:3693–704.

    Article  Google Scholar 

  119. Zhou F, Gong H, Liu X, Wu L, Luk KD-K, Hu Y. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy. PLoS ONE. 2014;9:e104442.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liu D, Chen J, Hu X, Hu G, Liu Y, Yang K, et al. Contralesional homotopic functional plasticity in patients with temporal glioma. J Neurosurg. 2020;134:417–25.

    Article  PubMed  Google Scholar 

  121. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.

    Article  CAS  PubMed  Google Scholar 

  122. Newbold DJ, Laumann TO, Hoyt CR, Hampton JM, Montez DF, Raut RV, et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron. 2020;107:580–9.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Newbold DJ, Gordon EM, Laumann TO, Seider NA, Montez DF, Gross SJ, et al. Cingulo-opercular control network and disused motor circuits joined in standby mode. Proc Natl Acad Sci. 2021;118:e2019128118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chauvin RJ, Newbold DJ, Nielsen AN, Miller RL, Krimmel SR, Metoki A, et al. Disuse-driven plasticity in the human thalamus and putamen. bioRxiv. 2024;2023.11.07.566031.

  125. Nelson CA, Bos K, Gunnar MR, Sonuga-Barke EJS. The neurobiological toll of early human deprivation. Monogaphs Soc Res Child Dev. 2011;76:127–46.

    Article  Google Scholar 

  126. Russotti J, Warmingham JM, Duprey EB, Handley ED, Manly JT, Rogosch FA, et al. Child Abuse & Neglect Child maltreatment and the development of psychopathology: The role of developmental timing and chronicity. Child Abus Negl. 2021;120:105215.

    Article  Google Scholar 

  127. Humphreys KL, King LS, Guyon-Harris KL, Sheridan MA, McLaughlin KA, Radulescu A, et al. Foster care leads to sustained cognitive gains following severe early deprivation. Proc Natl Acad Sci. 2022;119:e2119318119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Joëls M, Karst H, Alfarez D, Heine VM, Qin Y, van Riel E, et al. Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress. 2004;7:221–31.

    Article  PubMed  Google Scholar 

  129. McEwen BS. Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain Res. 2015;1645:50–4.

  130. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62:431–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G, et al. Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem. 2008;107:522–32.

    Article  CAS  PubMed  Google Scholar 

  133. Vyas A, Chattarji S. Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci. 2004;118:1450–4.

    Article  PubMed  Google Scholar 

  134. McKlveen JM, Morano RL, Fitzgerald M, Zoubovsky S, Cassella SN, Scheimann JR, et al. Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction. Biol Psychiatry. 2016;80:754–64.

    Article  PubMed  PubMed Central  Google Scholar 

  135. McKlveen JM, Moloney RD, Scheimann JR, Myers B, Herman JP. “Braking” the prefrontal cortex: the role of glucocorticoids and interneurons in stress adaptation and pathology. Biol Psychiatry. 2019;86:669–81.

    Article  CAS  PubMed  Google Scholar 

  136. Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2019;13:87.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fagerholm ED, Leech R, Williams S, Zarate CA, Moran RJ, Gilbert JR. Fine-tuning neural excitation/inhibition for tailored ketamine use in treatment-resistant depression. Transl Psychiatry. 2021;11:1–10.

    Article  Google Scholar 

  139. Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Perrine SA, Ghoddoussi F, Michaels MS, Sheikh IS, McKelvey G, Galloway MP. Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: An 11.7T 1H-MRS study in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;51:9–15.

    Article  CAS  Google Scholar 

  141. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2021;27:281–95.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hyman SL, Levy SE, Myers SM, Council on children with disabilities SODABP, Kuo DZ, Apkon S, et al. Identification, Evaluation, and Management of Children With Autism Spectrum Disorder. Pediatrics 2020;145:e20193447.

    Article  PubMed  Google Scholar 

  143. DePasquale CE, Herzberg MP, Gunnar MR. The pubertal stress recalibration hypothesis: Potential neural and behavioral consequences. Child Dev Perspect. 2021;15:249–56.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Foulkes L, Blakemore S-J. Is there heightened sensitivity to social reward in adolescence? Curr Opin Neurobiol. 2016;40:81–85.

    Article  CAS  PubMed  Google Scholar 

  145. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–95.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Knoll LJ, Magis-Weinberg L, Speekenbrink M, Blakemore S-J. Social influence on risk perception during adolescence. Psychol Sci. 2015;26:583–92.

    Article  PubMed  Google Scholar 

  147. Lam CB, Mchale SM, Crouter AC. Time with peers from middle childhood to late adolescence: developmental course and adjustment correlates. Child Dev. 2014;85:1677–93.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gabard-Durnam LJ, Flannery J, Goff B, Gee DG, Humphreys KL, Telzer E, et al. The development of human amygdala functional connectivity at rest from 4 to 23years: a cross-sectional study. NeuroImage. 2014;95:193–207.

    Article  PubMed  Google Scholar 

  150. Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, et al. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci. 2013;33:4584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ojha A, Teresi GI, Slavich GM, Gotlib IH, Ho TC Social threat, fronto-cingulate-limbic morphometry, and symptom course in depressed adolescents: a longitudinal investigation. Psychol Med. 2022;53:5203–17.

  152. Scherf KS, Smyth JM, Delgado MR. The amygdala: an agent of change in adolescent neural networks. Hormones Behav. 2013;64:298–313.

    Article  Google Scholar 

  153. Tottenham N, Galván A. Stress and the adolescent brain: amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neurosci Biobehav Rev. 2016;70:217–27.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH. Early developmental emergence of human amygdala – prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci USA. 2013;110:15638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kim P, Evans GW, Angstadt M, Ho SS, Sripada CS, Swain JE, et al. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc Natl Acad Sci USA. 2013;110:18442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cullen KR, Westlund MK, Klimes-Dougan B, Mueller BA, Houri A, Eberly LE, et al. Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry. 2014;71:1138–47.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

  158. Heller AS, Johnstone T, Light SN, Peterson MJ, Kolden GG, Kalin NH, et al. Relationships between changes in sustained fronto-striatal connectivity and positive affect in major depression resulting from antidepressant treatment. AJP. 2013;170:197–206.

    Article  Google Scholar 

  159. Straub J, Metzger CD, Plener PL, Koelch MG, Groen G, Abler B. Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. J Affect Disord. 2017;209:135–9.

    Article  CAS  PubMed  Google Scholar 

  160. Yoon L, Rohrsetzer F, Battel L, Anés M, Manfro PH, Rohde LA, et al. Frontolimbic network topology associated with risk and presence of depression in adolescents: a study using a composite risk score in Brazil. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:426–35.

    PubMed  Google Scholar 

  161. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. AJP. 2017;174:676–85.

    Article  Google Scholar 

  162. Molina JL, Voytek B, Thomas ML, Joshi YB, Bhakta SG, Talledo JA, et al. Memantine Effects on Electroencephalographic Measures of Putative Excitatory/Inhibitory Balance in Schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:562–8.

    PubMed  PubMed Central  Google Scholar 

  163. Sun Y, Farzan F, Barr MS, Kirihara K, Fitzgerald PB, Light GA, et al. Gamma oscillations in schizophrenia: Mechanisms and clinical significance. Brain Res. 2011;1413:98–114.

    Article  CAS  PubMed  Google Scholar 

  164. Tada M, Kirihara K, Koshiyama D, Nagai T, Fujiouka M, Usui K, et al. Alterations of auditory-evoked gamma oscillations are more pronounced than alterations of spontaneous power of gamma oscillation in early stages of schizophrenia. Transl Psychiatry. 2023;13:1–8.

    Article  Google Scholar 

  165. Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability. Mol Autism. 2021;12:17.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gabard-Durnam LJ, Wilkinson C, Kapur K, Tager-Flusberg H, Levin AR, Nelson CA. Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat Commun. 2019;10:4188.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Karalunas SL, Ostlund BD, Alperin BR, Figuracion M, Gustafsson HC, Deming EM, et al. Electroencephalogram aperiodic power spectral slope can be reliably measured and predicts ADHD risk in early development. Dev Psychobiol. 2022;64:e22228.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Robertson MM, Furlong S, Voytek B, Donoghue T, Boettiger CA, Sheridan MA. EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood. J Neurophysiol. 2019;122:2427–37.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gong J, Wang J, Qiu S, Chen P, Luo Z, Wang J, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis. Transl Psychiatry. 2020;10:1–13.

    Article  Google Scholar 

  170. Li W, Chen Z, Wu M, Zhu H, Gu L, Zhao Y, et al. Characterization of brain blood flow and the amplitude of low-frequency fluctuations in major depressive disorder: a multimodal meta-analysis. J Affect Disord. 2017;210:303–11.

    Article  PubMed  Google Scholar 

  171. Zhang Z, Bo Q, Li F, Zhao L, Wang Y, Liu R, et al. Increased ALFF and functional connectivity of the right striatum in bipolar disorder patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;111:110140.

    Article  Google Scholar 

  172. Hacker C, Mocchi MM, Xiao J, Metzger BA, Adkinson JA, Pascuzzi BR, et al. Aperiodic neural activity is a biomarker for depression severity. medRxiv:2023.11.07.23298040. Available from: https://doi.org/10.1101/2023.11.07.23298040.

  173. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision functional mapping of individual human brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, et al. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci USA. 2020;117:3808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The preparation of this manuscript was supported by funding from the National Institute of Mental Health, grants R01 MH113883 (JL, MPH), R01 MH122389 (CMS), R01 MH131584 (CMS) and T32 MH100019 (ANN). Additional support was provided by the Samuel and Mae S. Ludwig Chair in Psychiatry at Barnes-Jewish Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Authors MPH and ANN contributed equally to the manuscript and should be considered co-first authors. All authors made substantial contributions to the conception of the review, drafting and revising for intellectual content, and approved the final version of the manuscript. Each author agrees to be accountable for the accuracy and integrity of the work.

Corresponding authors

Correspondence to Max P. Herzberg or Ashley N. Nielsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzberg, M.P., Nielsen, A.N., Luby, J. et al. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01947-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01947-7

Search

Quick links