Abstract
A central goal of neuroscience is to understand how the brain transforms external stimuli and internal bodily signals into patterns of activity that underlie cognition, emotional states, and behavior. Understanding how these patterns of activity may be disrupted in mental illness is crucial for developing novel therapeutics. It is well appreciated that psychiatric disorders are complex, circuit-based disorders that arise from dysfunctional activity patterns generated in discrete cell types and their connections. Recent advances in large-scale, cell-type specific calcium imaging approaches have shed new light on the cellular, circuit, and network-level dysfunction in animal models for psychiatric disorders. Here, we highlight a series of recent findings over the last ~10 years from in vivo calcium imaging studies that show how aberrant patterns of activity in discrete cell types and circuits may underlie behavioral deficits in animal models for several psychiatric disorders, including depression, anxiety, autism spectrum disorders, and schizophrenia. These advances in calcium imaging in pre-clinical models demonstrate the power of cell-type-specific imaging tools in understanding the underlying dysfunction in cell types, activity patterns, and neural circuits that may contribute to disease and provide new blueprints for developing more targeted therapeutics and treatment strategies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 13 print issues and online access
$259.00 per year
only $19.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
09 September 2024
A Correction to this paper has been published: https://doi.org/10.1038/s41386-024-01982-4
References
Xia F, Kheirbek MA. Circuit-based biomarkers for mood and anxiety disorders. Trends Neurosci. 2020;43:902ā15.
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron. 2023;111:3716ā38.
Bi X, Beck C, Gong Y. Genetically encoded fluorescent indicators for imaging brain chemistry. Biosensors. 2021;11:116.
Lin MZ, Schnitzer MJ. Genetically encoded indicators of neuronal activity. Nat Neurosci. 2016;19:1142ā53.
DayāCooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem. 2023;164:284ā308.
Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73:862ā85.
Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A. Optical monitoring of brain function in vivo: from neurons to networks. PflĆ¼g Arch - Eur J Physiol. 2006;453:385ā96.
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11ā21.
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci. 2022;23:257ā74.
Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science. 2023;382:eabq8173.
Willmore L, Cameron C, Yang J, Witten IB, Falkner AL. Behavioural and dopaminergic signatures of resilience. Nature. 2022;611:124ā32.
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science. 2021;372:eabf4588.
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017;551:232ā6.
Zong W, Obenhaus HA, SkytĆøen ER, Eneqvist H, de Jong NL, Vale R, et al. Large-scale two-photon calcium imaging in freely moving mice. Cell. 2022;185:1240ā1256.e30.
Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron. 2020;107:836ā853.e11.
Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods. 2014;11:763ā72.
Padilla-Coreano N, Canetta S, Mikofsky RM, Alway E, Passecker J, Myroshnychenko MV, et al. Hippocampal-prefrontal theta transmission regulates avoidance behavior. Neuron. 2019;104:601ā610.e4.
Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat Neurosci. 2018;21:1272ā80.
Chen Y, Jang H, Spratt P, Kosar S, Taylor DE, Essner RA, et al. Soma-targeted imaging of neural circuits by ribosome tethering. Neuron. 2020;107:454ā469.e6.
Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157:1535ā51.
Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238ā42.
Tecuapetla F, Matias S, Dugue GP, Mainen ZF, Costa RM. Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat Commun. 2014;5:4315.
Allen WE, Kauvar IV, Chen MZ, Richman EB, Yang SJ, Chan K, et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron. 2017;94:891ā907.e6.
Couto J, Musall S, Sun XR, Khanal A, Gluf S, Saxena S, et al. Chronic, cortex-wide imaging of specific cell populations during behavior. Nat Protoc. 2021;16:3241ā63.
Makino H, Ren C, Liu H, Kim AN, Kondapaneni N, Liu X, et al. Transformation of cortex-wide emergent properties during motor learning. Neuron. 2017;94:880ā890.e8.
Ren C, Komiyama T. Characterizing cortex-wide dynamics with wide-field calcium imaging. J Neurosci. 2021;41:4160ā8.
Zhang L, Liang B, Barbera G, Hawes S, Zhang Y, Stump K, et al. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr Protoc Neurosci. 2019;86:e56.
Kahan A, Greenbaum A, Jang MJ, Robinson JE, Cho JR, Chen X, et al. Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses. Cell Rep. 2021;36:109744.
Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife. 2018;7:e32671.
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.
Biane JS, Ladow MA, Stefanini F, Boddu SP, Fan A, Hassan S, et al. Neural dynamics underlying associative learning in the dorsal and ventral hippocampus. Nat Neurosci. 2023;26:798ā809.
Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci. 2010;107:11981ā6.
Piantadosi SC, Zhou ZC, Pizzano C, Pedersen CE, Nguyen TK, Thai S, et al. Holographic stimulation of opposing amygdala ensembles bidirectionally modulates valence-specific behavior via mutual inhibition. Neuron. 2024;112:593ā610.e5.
Zhdanava M, Pilon D, Ghelerter I, Chow W, Joshi K, Lefebvre P, Sheehan JJ. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. J Clin Psychiatry. 2021;82:20m13699.
Greenberg P, Chitnis A, Louie D, Suthoff E, Chen SY, Maitland J, et al. The economic burden of adults with major depressive disorder in the United States (2019). Adv Ther. 2023;40:4460ā79.
Atrooz F, Alkadhi KA, Salim S. Understanding stress: Insights from rodent models. Curr Res Neurobiol. 2021;2:100013.
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm. 2019;126:1383ā408.
Samuels BA, Leonardo ED, Gadient R, Williams A, Zhou J, David DJ, et al. Modeling treatment-resistant depression. Neuropharmacology. 2011;61:408ā13.
Kolasa M, Faron-GĆ³recka A. Preclinical models of treatment-resistant depression: challenges and perspectives. Pharmacol Rep. 2023;75:1326ā40.
Pilmeyer J, Huijbers W, Lamerichs R, Jansen J, Breeuwer M, Zinger S. Functional MRI in major depressive disorder: a review of findings, limitations, and future prospects. J Neuroimaging. 2022;32:582ā95.
Liu RT, Alloy LB. Stress generation in depression: a systematic review of the empirical literature and recommendations for future study. Clin Psychol Rev. 2010;30:582ā93.
Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298:1685ā7.
Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183ā91.
Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391ā404.
Qi G, Zhang P, Li T, Li M, Zhang Q, He F, et al. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun. 2022;13:577.
Muir J, Lorsch ZS, Ramakrishnan C, Deisseroth K, Nestler EJ, Calipari ES, Bagot RC. In vivo fiber photometry reveals signature of future stress susceptibility in nucleus accumbens. Neuropsychopharmacology. 2018;43:255ā63.
Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98ā102.
Gergues MM, Han KJ, Choi HS, Brown B, Clausing KJ, Turner VS, et al. Circuit and molecular architecture of a ventral hippocampal network. Nat Neurosci. 2020;23:1444ā52.
Li L, Durand-de Cuttoli R, Aubry AV, Burnett CJ, Cathomas F, Parise LF, et al. Social trauma engages lateral septum circuitry to occlude social reward. Nature. 2023;613:696ā703.
Li, F et al. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors. Neuropsychopharmacology. 2024. https://doi.org/10.1038/s41386-024-01829-y.
Haynes SE, Lacagnina A, Seong HS, Afzal M, Morel C, et al. CRF neurons establish resilience via stress-history dependent BNST modulation. 2022. http://biorxiv.org/lookup/doi/10.1101/2022.08.31.505596, https://doi.org/10.1101/2022.08.31.505596.
Fetcho RN, Parekh PK, Chou J, Kenwood M, ChalenƧon L, Estrin DJ, et al. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron. 2024;112:473ā487.e4.
Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856ā64.
Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology. 2012;37:1526ā33.
Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66:522ā6.
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91ā95.
Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, Kwan AC. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535ā2544.e4.
Gao Y, Gao D, Zhang H, Zheng D, Du J, Yuan C, et al. BLA DBS improves anxiety and fear by correcting weakened synaptic transmission from BLA to adBNST and CeL in a mouse model of foot shock. Cell Rep. 2024;43:113766.
Penninx BW, Pine DS, Holmes EA, Reif A. Anxiety disorders. Lancet. 2021;397:914ā27.
Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. Neurobiological links between stress and anxiety. Neurobiol Stress. 2019;11:100191.
Samuels BA, Hen R. Novelty-Suppressed Feeding in the Mouse. Mood and anxiety related phenotypes in mice: characterization using behavioral tests, Volume II. Totowa, NJ: Humana Press; 2011. pp.107ā121
Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18:1394ā404.
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron. 2018;97:670ā683.e6.
Lim SC, Fusi S, Hen R. Ventral CA1 population codes for anxiety. 2023. http://biorxiv.org/lookup/doi/10.1101/2023.09.25.559358, https://doi.org/10.1101/2023.09.25.559358.
Turner VS, OāSullivan RO, Kheirbek MA. Linking external stimuli with internal drives: a role for the ventral hippocampus. Curr Opin Neurobiol. 2022;76:102590.
Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun. 2020;11:183.
SƔnchez-Bellot C, AlSubaie R, Mishchanchuk K, Wee RWS, MacAskill AF. Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nat Commun. 2022;13:339.
Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A, JunghƤnel M, et al. Aversive state processing in the posterior insular cortex. Nat Neurosci. 2019;22:1424ā37.
Fitzgerald JM, DiGangi JA, Phan KL. Functional neuroanatomy of emotion and its regulation in PTSD. Harv Rev Psychiatry. 2018;26:116ā28.
Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Abe O. MRI findings in posttraumatic stress disorder. J Magn Reson Imaging. 2020;52:380ā96.
Taschereau-Dumouchel V, Michel M, Lau H, Hofmann SG, LeDoux JE. Putting the āmentalā back in āmental disordersā: a perspective from research on fear and anxiety. Mol Psychiatry. 2022;27:1322ā30.
LeDoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci. 2018;19:269ā82.
LeDoux JE, Brown R. A higher-order theory of emotional consciousness. Proc Natl Acad Sci. 2017;114:E2016āE2025.
GrĆ¼ndemann J, Bitterman Y, Lu T, Krabbe S, Grewe BF, Schnitzer MJ, LĆ¼thi A. Amygdala ensembles encode behavioral states. Science. 2019;364:eaav8736.
Hagihara KM, Bukalo O, Zeller M, Aksoy-Aksel A, Karalis N, Limoges A, et al. Intercalated amygdala clusters orchestrate a switch in fear state. Nature. 2021;594:403ā7.
Hallock HL, Quillian HM, Maynard KR, Mai Y, Chen HY, Hamersky GR, et al. Molecularly defined hippocampal inputs regulate population dynamics in the prelimbic cortex to suppress context fear memory retrieval. Biol Psychiatry. 2020;88:554ā65.
Zaki Y, Mau W, Cincotta C, Monasterio A, Odom E, Doucette E, et al. Hippocampus and amygdala fear memory engrams re-emerge after contextual fear relapse. Neuropsychopharmacology. 2022;47:1992ā2001.
Kirkby LA, Luongo FJ, Lee MB, Nahum M, Van Vleet TM, Rao VR, et al. An amygdala-hippocampus subnetwork that encodes variation in human mood. Cell. 2018;175:1688ā1700.e14.
Jackson AD, Cohen JL, Phensy AJ, Chang EF, Dawes HE, Sohal VS, et al. Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron. 2024; S0896627323009765. https://doi.org/10.1016/j.neuron.2023.12.017.
Chamberlain BL, Ahmari SE. Animal Models for OCD Research. Curr Top Behav Neurosci. 2021;49:55ā96.
Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234ā9.
Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007;448:894ā900.
St. Laurent R, Kusche KM, Kreitzer AC, Malenka RC. Intercalated amygdala dysfunction drives extinction deficits in the Sapap3 mouse model of obsessive-compulsive disorder. 2024. https://www.biorxiv.org/content/10.1101/2024.02.12.578709v1#:~:text=Results%20We%20find%20impaired%20neural,by%20ITCd%20neural%20activity.
Manning EE, Geramita MA, Piantadosi SC, Pierson JL, Ahmari SE. Distinct patterns of abnormal lateral orbitofrontal cortex activity during compulsive grooming and reversal learning normalize after fluoxetine. Biol Psychiatry. 2023;93:989ā99.
Lai M-C, Lombardo M V, Baron-Cohen S. Autism. Lancet. 2014;383:896ā910.
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy. 2022;71:i81āi99.
Havdahl A, Niarchou M, Starnawska A, Uddin M, van der Merwe C, Warrier V. Genetic contributions to autism spectrum disorder. Psychol Med. 2021;51:2260ā73.
Shimizu A, Asakawa S, Sasaki T, Yamazaki S, Yamagata H, Kudoh J, et al. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3āq24.1. Biochem Biophys Res Commun. 2003;309:143ā54.
Wu J, Yu P, Jin X, Xu X, Li J, Li Z, et al. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. J Genet Genomics. 2018;45:527ā38.
Bork P, Beckmann G. The CUB domain: a widespread module in developmentally regulated proteins. J Mol Biol. 1993;231:539ā45.
Holmquist E, Okroj M, Nodin B, Jirstrƶm K, Blom AM. Sushi domain-containing protein 4 (SUSD4) inhibits complement by disrupting the formation of the classical C3 convertase. FASEB J. 2013;27:2355ā66.
Song W, Li Q, Wang T, Li Y, Fan T, Zhang J, et al. Putative complement control protein CSMD3 dysfunction impairs synaptogenesis and induces neurodevelopmental disorders. Brain Behav Immun. 2022;102:237ā50.
Oeschger FM, Wang WZ, Lee S, GarcĆa-Moreno F, Goffinet AM, ArbonĆ©s ML, et al. Gene expression analysis of the embryonic subplate. Cereb Cortex. 2012;22:1343ā59.
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, et al. CSMD3 deficiency leads to motor impairments and autism-like behaviors via dysfunction of cerebellar purkinje cells in mice. J Neurosci. 2023;43:3949ā69.
Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A. Screening for fragile X syndrome: a literature review and modelling study. Health Technol Assess. 2003;7:1ā106.
Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet. 2008;16:666ā72.
Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817ā22.
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201ā14.
GonƧalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci. 2013;16:903ā9.
Golshani P, GonƧalves JT, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C. Internally mediated developmental desynchronization of neocortical network activity. J Neurosci. 2009;29:10890ā9.
Rochefort NL, Garaschuk O, Milos RI, Narushima M, Marandi N, Pichler B, et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci USA. 2009;106:15049ā54.
Buckley AW, Rodriguez AJ, Jennison K, Buckley J, Thurm A, Sato S, et al. Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development. Arch Pediatr Adolesc Med. 2010;164:1032ā7.
Elia M, Ferri R, Musumeci SA, Del Gracco S, Bottitta M, Scuderi C, et al. Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain Dev. 2000;22:88ā92.
He CX, Cantu DA, Mantri SS, Zeiger WA, Goel A, Portera-Cailliau C. Tactile defensiveness and impaired adaptation of neuronal activity in the Fmr1 knock-out mouse model of autism. J Neurosci J Soc Neurosci. 2017;37:6475ā87.
Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther. 2007;61:190ā200.
Butler MG, Allen GA, Haynes JL, Singh DN, Watson MS, Breg WR. Anthropometric comparison of mentally retarded males with and without the fragile X syndrome. Am J Med Genet. 1991;38:260ā8.
Butler MG, Mangrum T, Gupta R, Singh DN. A 15-item checklist for screening mentally retarded males for the fragile X syndrome. Clin Genet. 1991;39:347ā54.
Goel A, Cantu DA, Guilfoyle J, Chaudhari GR, Newadkar A, Todisco B, et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat Neurosci. 2018;21:1404ā11.
Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18:671ā84.
Jiang Y, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8ā27.
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25ā27.
Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.
Yang M, Bozdagi O, Scattoni ML, Wƶhr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci J Soc Neurosci. 2012;32:6525ā41.
Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20:3093ā108.
PeƧa J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437ā42.
Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci. 2020;23:520ā32.
Zhang D, Yu B, Liu J, Jiang W, Xie T, Zhang R, et al. Altered visual cortical processing in a mouse model of MECP2 duplication syndrome. Sci Rep. 2017;7:6468.
Ortiz-Cruz CA, Marquez EJ, Linares-GarcĆa CI, Perera-Murcia GR, Ramiro-CortĆ©s Y. Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Sci Rep. 2022;12:22230.
Nakabayashi K, Scherer SW. The human contactin-associated protein-like 2 gene (CNTNAP2) spans over 2 Mb of DNA at chromosome 7q35. Genomics. 2001;73:108ā12.
Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet. 2014;22:171ā8.
Geramita MA, Wen JA, Rannals MD, Urban NN. Decreased amplitude and reliability of odor-evoked responses in two mouse models of autism. J Neurophysiol. 2020;123:1283ā94.
Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron. 1999;24:1037ā47.
Inda MC, DeFelipe J, MuƱoz A. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci USA. 2006;103:2920ā5.
Duflocq A, Chareyre F, Giovannini M, Couraud F, Davenne M. Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B. BMC Biol. 2011;9:66.
Gordon A, Salomon D, Barak N, Pen Y, Tsoory M, Kimchi T, et al. Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Mol Cell Neurosci. 2016;70:42ā53.
Frost NA, Haggart A, Sohal VS. Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior. PLoS Biol. 2021;19:e3001235.
Resendez SL, Namboodiri V, Otis JM, Eckman L, Rodriguez-Romaguera J, Ung RL, et al. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J Neurosci J Soc Neurosci. 2020;40:2282ā95.
Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong A, Kauvar I, et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med. 2017;9:eaah6733.
Brumback AC, Ellwood IT, Kjaerby C, Iafrati J, Robinson S, Lee AT, et al. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol Psychiatry. 2018;23:2078ā89.
Palmer BA, Pankratz VS, Bostwick JM. The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry. 2005;62:247ā53.
Olfson M, Gerhard T, Huang C, Crystal S, Stroup TS. Premature mortality among adults with schizophrenia in the United States. JAMA Psychiatry. 2015;72:1172ā81.
Velligan DI, Rao S. The epidemiology and global burden of schizophrenia. J Clin Psychiatry. 2023;84:MS21078COM5.
Gandal MJ, Edgar JC, Klook K, Siegel SJ. Gamma synchrony: towards a translational biomarker for the treatment resistant symptoms of schizophrenia. Neuropharmacology. 2012;62:1504ā18.
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol. 2024;84:102820.
Kharawala S, Hastedt C, Podhorna J, Shukla H, Kappelhoff B, Harvey PD. The relationship between cognition and functioning in schizophrenia: a semi-systematic review. Schizophr Res Cogn. 2022;27:100217.
Domino EF, Luby ED. Phencyclidine/schizophrenia: one view toward the past, the other to the future. Schizophr Bull. 2012;38:914ā9.
Noda Y, Yamada K, Furukawa H, Nabeshima T. Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br J Pharmacol. 1995;116:2531ā7.
Schmack K, Bosc M, Ott T, Sturgill JF, Kepecs A. Striatal dopamine mediates hallucination-like perception in mice. Science. 2021;372:eabf4740.
FĆ©nelon K, Xu B, Lai CS, Mukai J, Markx S, Stark KL, et al. The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J Neurosci. 2013;33:14825ā39.
Zaremba JD, Diamantopoulou A, Danielson NB, Grosmark AD, Kaifosh PW, Bowler JC, et al. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion. Nat Neurosci. 2017;20:1612ā23.
Marissal T, Salazar RF, Bertollini C, Mutel S, De Roo M, Rodriguez I, et al. Restoring wild type-like CA1 network dynamics and behaviour during adulthood in a mouse model of schizophrenia. Nat Neurosci. 2018;21:1412ā20.
Mesbah-Oskui L, Georgiou J, Roder JC. Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits. NPJ Schizophr. 2015;1:1ā7.
Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21:1281ā9.
Weinreb C, Pearl JE, Lin S, Osman MAM, Zhang L, Annapragada S, et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics. 2023. http://biorxiv.org/lookup/doi/10.1101/2023.03.16.532307, https://doi.org/10.1101/2023.03.16.532307.
Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nat Neurosci. 2020;23:487ā99.
Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci. 2018;21:696ā706.
Bacmeister CM, Huang R, Osso LA, Thornton MA, Conant L, Chavez AR, et al. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat Neurosci. 2022;25:1300ā13.
McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD. Motor skill learning requires active central myelination. Science. 2014;346:318ā22.
Doron A, Rubin A, Benmelech-Chovav A, Benaim N, Carmi T, Refaeli R, et al. Hippocampal astrocytes encode reward location. Nature. 2022;609:772ā8.
Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat Neurosci. 2020;23:1229ā39.
Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell. 2018;174:59ā71.e14.
Cho W-H, Noh K, Lee BH, Barcelon E, Jun SB, Park HY, et al. Hippocampal astrocytes modulate anxiety-like behavior. Nat Commun. 2022;13:6536.
Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573ā2589.e9.
Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol Psychiatry. 2022;27:2470ā84.
Hou G, Lai W, Jiang W, Liu X, Qian L, Zhang Y, et al. Myelin deficits in patients with recurrent major depressive disorder: An inhomogeneous magnetization transfer study. Neurosci Lett. 2021;750:135768.
Jiang L, Cheng Y, Jiang H, Xu J, Lu J, Shen Z, et al. Association between abnormal serum myelin-specific protein levels and white matter integrity in first-episode and drug-naĆÆve patients with major depressive disorder. J Affect Disord. 2018;232:61ā68.
Boda E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress-related disorders. Eur J Neurosci. 2021;53:281ā97.
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, et al. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. bioRxiv 2023.10.29.564636 (2023). https://doi.org/10.1101/2023.10.29.564636.
Funding
MAK: National Institute of Mental Health R01 MH108623, R01 MH111754, R01 MH117961, R01 MH125515, National Institute on Deafness and Other Communication Disorders R01 DC019813, One Mind Rising Star Award, Human Frontier Science Program RGY0072/2019, Esther A. and Joseph Klingenstein Fund, Pew Charitable Trusts, McKnight Memory and Cognitive Disorders Award. MMG: National Institute of Mental Health F31 MH130127, National Institute of Neurological Disorders and Stroke DSPAN F99/K00 NS130927.
Author information
Authors and Affiliations
Contributions
MMG, LKL, and MAK wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: the incomplete sentence āby elucidating cell types and their activity patternsā was inadvertently included in the abstract and was removed.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gergues, M.M., Lalani, L.K. & Kheirbek, M.A. Identifying dysfunctional cell types and circuitsĀ in animal models for psychiatric disorders with calcium imaging. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01942-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41386-024-01942-y