Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimaging for precision medicine in psychiatry

Abstract

Although the lifetime burden due to mental disorders is increasing, we lack tools for more precise diagnosing and treating prevalent and disabling disorders such as major depressive disorder. We lack strategies for selecting among available treatments or expediting access to new treatment options. This critical review concentrates on functional neuroimaging as a modality of measurement for precision psychiatry, focusing on major depressive and anxiety disorders. We begin by outlining evidence for the use of functional neuroimaging to stratify the heterogeneity of these disorders, based on underlying circuit dysfunction. We then review the current landscape of how functional neuroimaging-derived circuit predictors can predict treatment outcomes and clinical trajectories in depression and anxiety. Future directions for advancing clinically appliable neuroimaging measures are considered. We conclude by considering the opportunities and challenges of translating neuroimaging measures into practice. As an illustration, we highlight one approach for quantifying brain circuit function at an individual level, which could serve as a model for clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual overview of precision psychiatry informed by functional neuroimaging.
Fig. 2: An illustration of the analogy between precision medicine in cardiology and precision medicine in psychiatry.
Fig. 3: Availability of magnetic resonance imaging scanners.

Similar content being viewed by others

References

  1. Friedrich MJ. Depression is the leading cause of disability around the world. JAMA. 2017;317:1517 https://doi.org/10.1001/jama.2017.3826

    Article  PubMed  Google Scholar 

  2. AAP-AACAP-CHA. Declaration of a National Emergency in Child and Adolescent Mental Health. American Academy of Pediatrics. https://www.aap.org/en/advocacy/child-and-adolescent-healthy-mental-development/aap-aacap-cha-declaration-of-a-national-emergency-in-child-and-adolescent-mental-health/2021 October 19, 2021.

  3. Collaborators C-MD. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–12. https://doi.org/10.1016/S0140-6736(21)02143-7

    Article  Google Scholar 

  4. Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–50. https://doi.org/10.1016/S2215-0366(21)00395-3

    Article  Google Scholar 

  5. Curtin SC, Xu J. Death rates for leading causes of death for people aged 25–44 among the three largest race and ethnicity groups: United States, 2000–2020. NCHS Data Brief No. 451. 2022. Hyattsville, MD: National Center for Health Statistics; 2022.

  6. Alqueza KL, Pagliaccio D, Durham K, Srinivasan A, Stewart JG, Auerbach RP. Suicidal Thoughts and Behaviors Among Adolescent Psychiatric Inpatients. Arch Suicide Res. 2023;27:353–66. https://doi.org/10.1080/13811118.2021.1999874

    Article  PubMed  Google Scholar 

  7. Rush AJ. Star-D: lessons learned and future implications. Depress Anxiety. 2011;28:521–4. https://doi.org/10.1002/da.20841

    Article  PubMed  Google Scholar 

  8. Schumann G, Binder EB, Holte A, de Kloet ER, Oedegaard KJ, Robbins TW, et al. Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24:5–50. https://doi.org/10.1016/j.euroneuro.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  9. Williams LM. Special Report: Precision Psychiatry—Are We Getting Closer? 2022 August 18, 2022.

  10. Crosby D, Bossuyt, P., Brocklehurst, P., Chamberlain, C., Dive, C., Holmes C, et al. The MRC Framework for the Development, Design and Analysis of Stratified Medicine Research: Enabling Stratified, Precision and Personalised Medicine. Swindon, UK.2018.

  11. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3:472–80. https://doi.org/10.1016/S2215-0366(15)00579-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron. 2015;85:11–26. https://doi.org/10.1016/j.neuron.2014.10.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams LM, Korgaonkar MS, Song YC, Paton R, Eagles S, Goldstein-Piekarski A, et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology. 2015;40:2398–408. https://doi.org/10.1038/npp.2015.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korgaonkar MS, Goldstein-Piekarski AN, Fornito A, Williams LM. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol Psychiatry. 2020;25:1537–49. https://doi.org/10.1038/s41380-019-0574-2

    Article  CAS  PubMed  Google Scholar 

  15. Tozzi L, Goldstein-Piekarski AN, Korgaonkar MS, Williams LM. Connectivity of the cognitive control network during response inhibition as a predictive and response biomarker in major depression: evidence from a randomized clinical trial. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.08.005

  16. Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath CL, Choi KS, et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatry. 2017;174:533–45. https://doi.org/10.1176/appi.ajp.2016.16050518

    Article  PubMed  PubMed Central  Google Scholar 

  17. Doehrmann O, Ghosh SS, Polli FE, Reynolds GO, Horn F, Keshavan A, et al. Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry. 2013;70:87–97. https://doi.org/10.1001/2013.jamapsychiatry.5

    Article  PubMed  Google Scholar 

  18. Whitfield-Gabrieli S, Ghosh SS, Nieto-Castanon A, Saygin Z, Doehrmann O, Chai XJ, et al. Brain connectomics predict response to treatment in social anxiety disorder. Mol Psychiatry. 2016;21:680–5. https://doi.org/10.1038/mp.2015.109

    Article  CAS  PubMed  Google Scholar 

  19. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51. https://doi.org/10.1176/appi.ajp.2010.09091379

    Article  PubMed  Google Scholar 

  20. Williams LM, Carpenter WT, Carretta C, Papanastasiou E, Vaidyanathan U. Precision psychiatry research domain criteria conceptualization: Implications for clinical trials and future practice. CNS Spectr. 2023:1-47. https://doi.org/10.1017/S1092852923002420

  21. Morris SE, Sanislow CA, Pacheco J, Vaidyanathan U, Gordon JA, Cuthbert BN. Revisiting the seven pillars of RDoC. BMC Med. 2022;20:220 https://doi.org/10.1186/s12916-022-02414-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Insel TR, Landis SC, Collins FS. The NIH BRAIN initiative. Science. 2013;340:687–8. https://doi.org/10.1126/science.1239276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The Human Connectome Project: a data acquisition perspective. Neuroimage. 2012;62:2222–31. https://doi.org/10.1016/j.neuroimage.2012.02.018

    Article  PubMed  Google Scholar 

  24. Administration V. 2022. https://www.research.va.gov/currents/0522-VA-Launches-Scott-Hannon-Initiative-for-Precision-Mental-Health.cfm.

  25. Cole MW, Schneider W. The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage. 2007;37:343–60. https://doi.org/10.1016/j.neuroimage.2007.03.071

    Article  PubMed  Google Scholar 

  26. Cole MW, Repovš G, Anticevic A. The frontoparietal control system: a central role in mental health. Neuroscientist. 2014;20:652–64. https://doi.org/10.1177/1073858414525995

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014;83:238–51. https://doi.org/10.1016/j.neuron.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron. 2011;72:665–78. https://doi.org/10.1016/j.neuron.2011.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–8. https://doi.org/10.1073/pnas.0504136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage. 2008;42:998–1031. https://doi.org/10.1016/j.neuroimage.2008.03.059

    Article  PubMed  Google Scholar 

  32. Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JD, Whitfield-Gabrieli S. Resting-state anticorrelations between medial and lateral prefrontal cortex: association with working memory, aging, and individual differences. Cortex. 2015;64:271–80. https://doi.org/10.1016/j.cortex.2014.12.001

    Article  PubMed  Google Scholar 

  33. Crittenden BM, Mitchell DJ, Duncan J. Recruitment of the default mode network during a demanding act of executive control. Elife. 2015;4:e06481 https://doi.org/10.7554/eLife.06481

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12:1–47. https://doi.org/10.1162/08989290051137585

    Article  CAS  PubMed  Google Scholar 

  35. Hester R, Fassbender C, Garavan H. Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex. 2004;14:986–94. https://doi.org/10.1093/cercor/bhh059

    Article  PubMed  Google Scholar 

  36. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, et al. Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2016;173:373–84. https://doi.org/10.1176/appi.ajp.2015.14091200

    Article  PubMed  Google Scholar 

  37. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38. https://doi.org/10.1038/nm.4246

    Article  CAS  PubMed  Google Scholar 

  38. Liang S, Deng W, Li X, Greenshaw AJ, Wang Q, Li M, et al. Biotypes of major depressive disorder: neuroimaging evidence from resting-state default mode network patterns. Neuroimage Clin. 2020;28:102514. https://doi.org/10.1016/j.nicl.2020.102514

    Article  PubMed  PubMed Central  Google Scholar 

  39. Price RB, Gates K, Kraynak TE, Thase ME, Siegle GJ. Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology. 2017;42:2623–32. https://doi.org/10.1038/npp.2017.97

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tokuda T, Yoshimoto J, Shimizu Y, Okada G, Takamura M, Okamoto Y, et al. Identification of depression subtypes and relevant brain regions using a data-driven approach. Sci Rep. 2018;8:14082 https://doi.org/10.1038/s41598-018-32521-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunlop K, Grosenick L, Downar J, Vila-Rodriguez F, Gunning FM, Daskalakis ZJ, et al. Dimensional and categorical solutions to parsing depression heterogeneity in a large single-site sample. Biol Psychiatry. 2024. https://doi.org/10.1016/j.biopsych.2024.01.012

    Article  PubMed  Google Scholar 

  42. Chahal R, Weissman DG, Hallquist MN, Robins RW, Hastings PD, Guyer AE. Neural connectivity biotypes: associations with internalizing problems throughout adolescence. Psychol Med. 2021;51:2835–45. https://doi.org/10.1017/S003329172000149X

    Article  PubMed  Google Scholar 

  43. Tozzi L, Zhang X, Pines A, Olmsted AM, Zhai ES, Anene ET, et al. Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety. Nat Med. 2024. https://doi.org/10.1038/s41591-024-03057-9.

  44. Dunlop BW, Binder EB, Cubells JF, Goodman MM, Kelley ME, Kinkead B, et al. Predictors of remission in depression to individual and combined treatments (PReDICT): study protocol for a randomized controlled trial. Trials. 2012;13:106 https://doi.org/10.1186/1745-6215-13-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trivedi MH, McGrath PJ, Fava M, Parsey RV, Kurian BT, Phillips ML, et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J Psychiatr Res. 2016;78:11–23. https://doi.org/10.1016/j.jpsychires.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grieve SM, Korgaonkar MS, Etkin A, Harris A, Koslow SH, Wisniewski S, et al. Brain imaging predictors and the international study to predict optimized treatment for depression: study protocol for a randomized controlled trial. Trials. 2013;14:224 https://doi.org/10.1186/1745-6215-14-224

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kennedy SH, Downar J, Evans KR, Feilotter H, Lam RW, MacQueen GM, et al. The Canadian Biomarker Integration Network in Depression (CAN-BIND): advances in response prediction. Curr Pharm Des. 2012;18:5976–89. https://doi.org/10.2174/138161212803523635

    Article  CAS  PubMed  Google Scholar 

  48. Wiebenga JXM, Dickhoff J, Merelle SYM, Eikelenboom M, Heering HD, Gilissen R, et al. Prevalence, course, and determinants of suicide ideation and attempts in patients with a depressive and/or anxiety disorder: a review of NESDA findings. J Affect Disord. 2021;283:267–77. https://doi.org/10.1016/j.jad.2021.01.053

    Article  PubMed  Google Scholar 

  49. Geugies H, Opmeer EM, Marsman JBC, Figueroa CA, van Tol MJ, Schmaal L, et al. Decreased functional connectivity of the insula within the salience network as an indicator for prospective insufficient response to antidepressants. Neuroimage Clin. 2019;24:102064. https://doi.org/10.1016/j.nicl.2019.102064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry. 2014;171:395–7. https://doi.org/10.1176/appi.ajp.2014.14020138

    Article  PubMed  Google Scholar 

  51. Wise T, Marwood L, Perkins AM, Herane-Vives A, Joules R, Lythgoe DJ, et al. Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl Psychiatry. 2017;7:e1105. https://doi.org/10.1038/tp.2017.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry. 2013;74:48–54. https://doi.org/10.1016/j.biopsych.2012.11.007

    Article  PubMed  Google Scholar 

  53. Zhou HX, Chen X, Shen YQ, Li L, Chen NX, Zhu ZC, et al. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. Neuroimage. 2020;206:116287. https://doi.org/10.1016/j.neuroimage.2019.116287

    Article  PubMed  Google Scholar 

  54. Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety. 2017;34:9–24. https://doi.org/10.1002/da.22556

    Article  PubMed  Google Scholar 

  55. Goldstein-Piekarski AN, Staveland BR, Ball TM, Yesavage J, Korgaonkar MS, Williams LM. Intrinsic functional connectivity predicts remission on antidepressants: a randomized controlled trial to identify clinically applicable imaging biomarkers. Transl Psychiatry. 2018;8:57. https://doi.org/10.1038/s41398-018-0100-3

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chin Fatt CR, Jha MK, Cooper CM, Fonzo G, South C, Grannemann B, et al. Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression. Am J Psychiatry. 2020;177:143–54. https://doi.org/10.1176/appi.ajp.2019.18070870

    Article  PubMed  Google Scholar 

  57. Goldstein-Piekarski AN, Ball TM, Samara Z, Staveland BR, Keller AS, Fleming SL, et al. Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety. Biol Psychiatry. 2022;91:561–71. https://doi.org/10.1016/j.biopsych.2021.06.024

    Article  PubMed  Google Scholar 

  58. Lai CH, Wu YT. Frontal regional homogeneity increased and temporal regional homogeneity decreased after remission of first-episode drug-naive major depressive disorder with panic disorder patients under duloxetine therapy for 6 weeks. J Affect Disord. 2012;136:453–8. https://doi.org/10.1016/j.jad.2011.11.004

    Article  PubMed  Google Scholar 

  59. Andreescu C, Tudorascu DL, Butters MA, Tamburo E, Patel M, Price J, et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. 2013;214:313–21. https://doi.org/10.1016/j.pscychresns.2013.08.007

    Article  PubMed  Google Scholar 

  60. Kilpatrick LA, Krause-Sorio B, Siddarth P, Narr KL, Lavretsky H. Default mode network connectivity and treatment response in geriatric depression. Brain Behav. 2022;12:e2475. https://doi.org/10.1002/brb3.2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ju Y, Wang M, Liu J, Liu B, Yan D, Lu X, et al. Modulation of resting-state functional connectivity in default mode network is associated with the long-term treatment outcome in major depressive disorder. Psychol Med. 2023;53:5963–75. https://doi.org/10.1017/S0033291722002628

    Article  PubMed  Google Scholar 

  62. Guo WB, Liu F, Xue ZM, Xu XJ, Wu RR, Ma CQ, et al. Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:153–60. https://doi.org/10.1016/j.pnpbp.2012.01.011

    Article  PubMed  Google Scholar 

  63. Klobl M, Gryglewski G, Rischka L, Godbersen GM, Unterholzner J, Reed MB, et al. Predicting antidepressant citalopram treatment response via changes in brain functional connectivity after acute intravenous challenge. Front Comput Neurosci. 2020;14:554186. https://doi.org/10.3389/fncom.2020.554186

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cheng Y, Xu J, Arnone D, Nie B, Yu H, Jiang H, et al. Resting-state brain alteration after a single dose of SSRI administration predicts 8-week remission of patients with major depressive disorder. Psychol Med. 2017;47:438–50. https://doi.org/10.1017/S0033291716002440

    Article  CAS  PubMed  Google Scholar 

  65. Vai B, Bulgarelli C, Godlewska BR, Cowen PJ, Benedetti F, Harmer CJ. Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration. Eur Neuropsychopharmacol. 2016;26:2000–10. https://doi.org/10.1016/j.euroneuro.2016.09.640

    Article  CAS  PubMed  Google Scholar 

  66. Godlewska BR, Norbury R, Selvaraj S, Cowen PJ, Harmer CJ. Short-term SSRI treatment normalises amygdala hyperactivity in depressed patients. Psychol Med. 2012;42:2609–17. https://doi.org/10.1017/S0033291712000591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Godlewska BR, Browning M, Norbury R, Cowen PJ, Harmer CJ. Early changes in emotional processing as a marker of clinical response to SSRI treatment in depression. Transl Psychiatry. 2016;6:e957. https://doi.org/10.1038/tp.2016.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651–8. https://doi.org/10.1016/s0006-3223(01)01263-x

    Article  CAS  PubMed  Google Scholar 

  69. Victor TA, Furey ML, Fromm SJ, Ohman A, Drevets WC. Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry. 2010;67:1128–38. https://doi.org/10.1001/archgenpsychiatry.2010.144

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G, et al. Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. Am J Psychiatry. 2012;169:841–50. https://doi.org/10.1176/appi.ajp.2012.11121774

    Article  PubMed  Google Scholar 

  71. Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61:877–89. https://doi.org/10.1001/archpsyc.61.9.877

    Article  PubMed  Google Scholar 

  72. Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P. Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord. 2011;130:66–74. https://doi.org/10.1016/j.jad.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  73. Szczepanik J, Nugent AC, Drevets WC, Khanna A, Zarate CA Jr., Furey ML. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder. Psychiatry Res. Neuroimaging. 2016;254:67–73. https://doi.org/10.1016/j.pscychresns.2016.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fu CH, Williams SC, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008;64:505–12. https://doi.org/10.1016/j.biopsych.2008.04.033

    Article  PubMed  Google Scholar 

  75. Goldstein-Piekarski AN, Wielgosz J, Xiao L, Stetz P, Correa CG, Chang SE, et al. Early changes in neural circuit function engaged by negative emotion and modified by behavioural intervention are associated with depression and problem-solving outcomes: A report from the ENGAGE randomized controlled trial. EBioMedicine. 2021;67:103387. https://doi.org/10.1016/j.ebiom.2021.103387

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ferri J, Eisendrath SJ, Fryer SL, Gillung E, Roach BJ, Mathalon DH. Blunted amygdala activity is associated with depression severity in treatment-resistant depression. Cogn Affect Behav Neurosci. 2017;17:1221–31. https://doi.org/10.3758/s13415-017-0544-6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schoning S, et al. Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biol Psychiatry. 2010;67:155–60. https://doi.org/10.1016/j.biopsych.2009.07.023

    Article  PubMed  Google Scholar 

  78. Greenberg T, Fournier JC, Stiffler R, Chase HW, Almeida JR, Aslam H, et al. Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals. Mol Psychiatry. 2020;25:1526–36. https://doi.org/10.1038/s41380-019-0490-5

    Article  CAS  PubMed  Google Scholar 

  79. Dunlop K, Rizvi SJ, Kennedy SH, Hassel S, Strother SC, Harris JK, et al. Clinical, behavioral, and neural measures of reward processing correlate with escitalopram response in depression: a Canadian Biomarker Integration Network in Depression (CAN-BIND-1) Report. Neuropsychopharmacology. 2020;45:1390–7. https://doi.org/10.1038/s41386-020-0688-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klimes-Dougan B, Westlund Schreiner M, Thai M, Gunlicks-Stoessel M, Reigstad K, Cullen KR. Neural and neuroendocrine predictors of pharmacological treatment response in adolescents with depression: A preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:194–202. https://doi.org/10.1016/j.pnpbp.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  81. Forbes EE, Olino TM, Ryan ND, Birmaher B, Axelson D, Moyles DL, et al. Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cogn Affect Behav Neurosci. 2010;10:107–18. https://doi.org/10.3758/CABN.10.1.107

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hack L, Tozzi L, Zenteno S, Olmsted A, Hilton R, Yesavage J, et al. A cognitive biotype of depression linking symptoms, behavior measures, neural circuits, and treatment outcomes. Biol Psychiatry. 2023;93:S72–S3.

    Article  Google Scholar 

  83. Hack LM, Tozzi L, Zenteno S, Olmsted AM, Hilton R, Jubeir J, et al. A cognitive biotype of depression and symptoms, behavior measures, neural circuits, and differential treatment outcomes: a prespecified secondary analysis of a randomized clinical trial. JAMA Netw Open. 2023;6:e2318411. https://doi.org/10.1001/jamanetworkopen.2023.18411

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gyurak A, Patenaude B, Korgaonkar MS, Grieve SM, Williams LM, Etkin A. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol Psychiatry. 2016;79:274–81. https://doi.org/10.1016/j.biopsych.2015.02.037

    Article  CAS  PubMed  Google Scholar 

  85. Crane NA, Jenkins LM, Bhaumik R, Dion C, Gowins JR, Mickey BJ, et al. Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI. Brain. 2017;140:472–86. https://doi.org/10.1093/brain/aww326

    Article  PubMed  PubMed Central  Google Scholar 

  86. Patel V, Saxena S, Lund C, Thornicroft G, Baingana F, Bolton P, et al. The Lancet Commission on global mental health and sustainable development. Lancet. 2018;392:1553–98. https://doi.org/10.1016/S0140-6736(18)31612-X

    Article  PubMed  Google Scholar 

  87. Kraemer HC, Frank E, Kupfer DJ. Moderators of treatment outcomes: clinical, research, and policy importance. JAMA. 2006;296:1286–9. https://doi.org/10.1001/jama.296.10.1286

    Article  CAS  PubMed  Google Scholar 

  88. Simon GE, Perlis RH. Personalized medicine for depression: can we match patients with treatments? Am J Psychiatry. 2010;167:1445–55. https://doi.org/10.1176/appi.ajp.2010.09111680

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yesavage JA, Hoblyn J, Sheikh J, Tinklenberg JR, Noda A, O’Hara R, et al. Age and disease severity predict choice of atypical neuroleptic: a signal detection approach to physicians’ prescribing decisions. J Psychiatr Res. 2003;37:535–8. https://doi.org/10.1016/s0022-3956(03)00053-0

    Article  PubMed  Google Scholar 

  90. Council NS. New Mental Health Cost Calculator Shows Why Investing in Mental Health is Good for Business 2021 May 13.

  91. Dinga R, Schmaal L, Penninx B, van Tol MJ, Veltman DJ, van Velzen L, et al. Evaluating the evidence for biotypes of depression: Methodological replication and extension of. Neuroimage Clin. 2019;22:101796 https://doi.org/10.1016/j.nicl.2019.101796

    Article  PubMed  PubMed Central  Google Scholar 

  92. Grosenick L, Shi TC, Gunning FM, Dubin MJ, Downar J, Liston C. Functional and optogenetic approaches to discovering stable subtype-specific circuit mechanisms in depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:554–66. https://doi.org/10.1016/j.bpsc.2019.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  93. Melzer TR, Keenan RJ, Leeper GJ, Kingston-Smith S, Felton SA, Green SK, et al. Test-retest reliability and sample size estimates after MRI scanner relocation. Neuroimage. 2020;211:116608. https://doi.org/10.1016/j.neuroimage.2020.116608

    Article  PubMed  Google Scholar 

  94. Wen B, Tian S, Cheng J, Li Y, Zhang H, Xue K, et al. Test-retest multisite reproducibility of neurovascular 4D flow MRI. J Magn Reson Imaging. 2019;49:1543–52. https://doi.org/10.1002/jmri.26564

    Article  PubMed  Google Scholar 

  95. Holiga S, Sambataro F, Luzy C, Greig G, Sarkar N, Renken RJ, et al. Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS One. 2018;13:e0206583. https://doi.org/10.1371/journal.pone.0206583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flournoy JC, Bryce NV, Dennison MJ, Rodman AM, McNeilly EA, Lurie LA, et al. A precision neuroscience approach to estimating reliability of neural responses during emotion processing: Implications for task-fMRI. Neuroimage. 2024;285:120503. https://doi.org/10.1016/j.neuroimage.2023.120503

    Article  PubMed  Google Scholar 

  97. Siddiqi SH, Weigand A, Pascual-Leone A, Fox MD. Identification of personalized transcranial magnetic stimulation targets based on subgenual cingulate connectivity: an independent replication. Biol Psychiatry. 2021;90:e55–e6. https://doi.org/10.1016/j.biopsych.2021.02.015

    Article  PubMed  Google Scholar 

  98. Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, et al. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage. 2012;59:1404–12. https://doi.org/10.1016/j.neuroimage.2011.08.044

    Article  PubMed  Google Scholar 

  99. Compere L, Siegle GJ, Young K. Importance of test-retest reliability for promoting fMRI based screening and interventions in major depressive disorder. Transl Psychiatry. 2021;11:387. https://doi.org/10.1038/s41398-021-01507-3

    Article  PubMed  PubMed Central  Google Scholar 

  100. Williams LMY J. Cognitive control circuit function predicts antidepressant outcomes: a signal detection approach to actionable clinical decisions. Personalized Med Psychiatry. 2024;45-46:100126.

    Article  Google Scholar 

  101. Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med. 2023;29:317–33. https://doi.org/10.1038/s41591-022-02197-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lifshitz M, Sacchet MD, Huntenburg JM, Thiery T, Fan Y, Gartner M, et al. Mindfulness-based therapy regulates brain connectivity in major depression. Psychother Psychosom. 2019;88:375–7. https://doi.org/10.1159/000501170

    Article  PubMed  Google Scholar 

  103. Sezer I, Pizzagalli DA, Sacchet MD. Resting-state fMRI functional connectivity and mindfulness in clinical and non-clinical contexts: a review and synthesis. Neurosci Biobehav Rev. 2022;135:104583. https://doi.org/10.1016/j.neubiorev.2022.104583

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bloom PA, Pagliaccio D, Zhang J, Bauer CCC, Kyler M, Greene KD, et al. Mindfulness-based real-time fMRI neurofeedback: a randomized controlled trial to optimize dosing for depressed adolescents. BMC Psychiatry. 2023;23:757. https://doi.org/10.1186/s12888-023-05223-8

    Article  PubMed  PubMed Central  Google Scholar 

  105. Morris TP, Burzynska A, Voss M, Fanning J, Salerno EA, Prakash R, et al. Brain structure and function predict adherence to an exercise intervention in older adults. Med Sci Sports Exerc. 2022;54:1483–92. https://doi.org/10.1249/MSS.0000000000002949

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lloyd KM, Morris TP, Anteraper S, Voss M, Nieto-Castanon A, Whitfield-Gabrieli S, et al. Data-driven MRI analysis reveals fitness-related functional change in default mode network and cognition following an exercise intervention. Psychophysiology. 2024;61:e14469. https://doi.org/10.1111/psyp.14469

    Article  PubMed  Google Scholar 

  107. Bauer CCC, Okano K, Ghosh SS, Lee YJ, Melero H, Angeles CL, et al. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence. Psychiatry Res. 2020;284:112770. https://doi.org/10.1016/j.psychres.2020.112770

    Article  PubMed  PubMed Central  Google Scholar 

  108. Okano K, Bauer CCC, Ghosh SS, Lee YJ, Melero H, de Los Angeles C, et al. Real-time fMRI feedback impacts brain activation, results in auditory hallucinations reduction: Part 1: superior temporal gyrus -preliminary evidence. Psychiatry Res. 2020;286:112862. https://doi.org/10.1016/j.psychres.2020.112862

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Zhang Q, Wang J, Zhou M, Qing Y, Zou H, et al. Listen to your heart”: A novel interoceptive strategy for real-time fMRI neurofeedback training of anterior insula activity. Neuroimage. 2023;284:120455. https://doi.org/10.1016/j.neuroimage.2023.120455

    Article  PubMed  Google Scholar 

  110. Kucyi A, Esterman M, Capella J, Green A, Uchida M, Biederman J, et al. Prediction of stimulus-independent and task-unrelated thought from functional brain networks. Nat Commun. 2021;12:1793. https://doi.org/10.1038/s41467-021-22027-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. Nat Ment Health. 2023;1:827–40. https://doi.org/10.1038/s44220-023-00133-w

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hoemann K, Barrett LF, Quigley KS. Emotional granularity increases with intensive ambulatory assessment: methodological and individual factors influence how much. Front Psychol. 2021;12:704125. https://doi.org/10.3389/fpsyg.2021.704125

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kang SG, Cho SE. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21062148

  114. Whitfield-Gabrieli S, Wendelken C, Nieto-Castanon A, Bailey SK, Anteraper SA, Lee YJ, et al. Association of intrinsic brain architecture with changes in attentional and mood symptoms during development. JAMA Psychiatry. 2020;77:378–86. https://doi.org/10.1001/jamapsychiatry.2019.4208

    Article  PubMed  Google Scholar 

  115. Ho TC, Shah R, Mishra J, May AC, Tapert SF. Multi-level predictors of depression symptoms in the Adolescent Brain Cognitive Development (ABCD) study. J Child Psychol Psychiatry. 2022;63:1523–33. https://doi.org/10.1111/jcpp.13608

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fischer AS, Camacho MC, Ho TC, Whitfield-Gabrieli S, Gotlib IH. Neural markers of resilience in adolescent females at familial risk for major depressive disorder. JAMA Psychiatry. 2018;75:493–502. https://doi.org/10.1001/jamapsychiatry.2017.4516

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baldwin H, Loebel-Davidsohn L, Oliver D, Salazar de Pablo G, Stahl D, Riper H, et al. Real-world implementation of precision psychiatry: a systematic review of barriers and facilitators. Brain Sci. 2022;12. https://doi.org/10.3390/brainsci12070934

  118. Keepers GA, Fochtmann LJ, Anzia JM, Benjamin S, Lyness JM, Mojtabai R, et al. The American psychiatric association practice guideline for the treatment of patients with Schizophrenia. Am J Psychiatry. 2020;177:868–72. https://doi.org/10.1176/appi.ajp.2020.177901

    Article  PubMed  Google Scholar 

  119. Aiello EN, Depaoli EG. Norms and standardizations in neuropsychology via equivalent scores: software solutions and practical guides. Neurol Sci. 2022;43:961–6. https://doi.org/10.1007/s10072-021-05374-0

    Article  PubMed  Google Scholar 

  120. Siegle GJ. Beyond depression commentary: wherefore art thou, depression clinic of tomorrow? Clin Psychol (N. Y). 2011;18:305–10. https://doi.org/10.1111/j.1468-2850.2011.01261.x

    Article  Google Scholar 

  121. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86. https://doi.org/10.1016/S0140-6736(13)61611-6

    Article  PubMed  Google Scholar 

  122. Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, et al. Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med. 2013;43:471–81. https://doi.org/10.1017/S0033291712001511

    Article  CAS  PubMed  Google Scholar 

  123. Suicidology. AAo. Some Facts About Suicide and Depression 2009 June 23, 2009

  124. Census U. U.S. population by sex and age 2022 2023 Oct 2.

  125. Allen N, Wilkins JT. The urgent need to refocus cardiovascular disease prevention efforts on young adults. JAMA. 2023;329:886–7. https://doi.org/10.1001/jama.2023.2308

    Article  PubMed  Google Scholar 

  126. Greenberg PE, Fournier AA, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). Pharmacoeconomics. 2021;39:653–65. https://doi.org/10.1007/s40273-021-01019-4

    Article  PubMed  PubMed Central  Google Scholar 

  127. Prizeman K, Weinstein N, McCabe C. Effects of mental health stigma on loneliness, social isolation, and relationships in young people with depression symptoms. BMC Psychiatry. 2023;23:527. https://doi.org/10.1186/s12888-023-04991-7

    Article  PubMed  PubMed Central  Google Scholar 

  128. Illes J, Lombera S, Rosenberg J, Arnow B. In the mind’s eye: provider and patient attitudes on functional brain imaging. J Psychiatr Res. 2008;43:107–14. https://doi.org/10.1016/j.jpsychires.2008.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Williams LM, Hack, L.M. Precision Psychiatry: Using Neuroscience Insights to Inform Personally Tailored, Measurement-Based Care. : American Psychiatric Association Publishing.; 2021.

  130. EOCD. Magnetic resonance imaging (MRI) units (indicator). 2023.

  131. Hofmann B, Brandsaeter IO, Kjelle E. Variations in wait times for imaging services: a register-based study of self-reported wait times for specific examinations in Norway. BMC Health Serv Res. 2023;23:1287. https://doi.org/10.1186/s12913-023-10284-2

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kielar AZ, El-Maraghi RH, Schweitzer ME. Improving equitable access to imaging under universal-access medicine: the ontario wait time information program and its impact on hospital policy and process. J Am Coll Radio. 2010;7:573–81. https://doi.org/10.1016/j.jacr.2010.03.017

    Article  Google Scholar 

  133. McDaid E, Sun C-F, Trestman RL. A Painful Long Wait: Availability of Psychiatry Outpatient Care in the US. American Psychiatric Association; 2023.

    Google Scholar 

  134. Cui J, Wang Y, Liu R, Chen X, Zhang Z, Feng Y, et al. Effects of escitalopram therapy on resting-state functional connectivity of subsystems of the default mode network in unmedicated patients with major depressive disorder. Transl Psychiatry. 2021;11:634. https://doi.org/10.1038/s41398-021-01754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Runia, Yucel DE N, Lok A, de Jong K, Denys D, van Wingen GA, et al. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2022;132:433–48. https://doi.org/10.1016/j.neubiorev.2021.12.008

    Article  PubMed  Google Scholar 

  136. Dichter GS, Gibbs D, Smoski MJ. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord. 2015;172:8–17. https://doi.org/10.1016/j.jad.2014.09.028

    Article  PubMed  Google Scholar 

  137. Tassone VK, Gholamali Nezhad F, Demchenko I, Rueda A, Bhat V. Amygdala biomarkers of treatment response in major depressive disorder: An fMRI systematic review of SSRI antidepressants. Psychiatry Res Neuroimaging 2024;338:111777. https://doi.org/10.1016/j.pscychresns.2023.111777

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health [grant numbers R01MH101496 (LMW; NCT02220309), U01MH109985 (LMW)] and R61/R33 MH132072-01 (SWG).

Author information

Authors and Affiliations

Authors

Contributions

LMW contributed to the conceptualization of the review and to the writing and editing. SWG contributed to the conceptualization of the review and to the writing and editing.

Corresponding author

Correspondence to Leanne M. Williams.

Ethics declarations

Competing interests

LMW declares US Pants. App. 10/034,645 and 15/820,338: Systems and methods for detecting complex networks in MRI image data. SWG has nothing to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L.M., Whitfield Gabrieli, S. Neuroimaging for precision medicine in psychiatry. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01917-z

Search

Quick links